mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-20 18:54:09 +00:00

* feat: favorite apps & quick apps with their own configuration (#5515) * chore: extract chat history and drawer; fix model selector * feat: display favourite apps and make it configurable * feat: favorite apps & quick apps with their own configuration * fix: fix tab title and add loading state for searching * fix: cascade delete favorite app and quick app while deleting relative app * chore: make improvements * fix: favourite apps ui * fix: add permission for quick apps * chore: fix permission & clear redundant code * perf: chat home page code * chatbox ui * fix: 4.12.2-dev (#5520) * fix: add empty placeholder; fix app quick status; fix tag and layout * chore: add tab query for the setting tabs * chore: use `useConfirm` hook instead of `MyModal` * remove log * fix: fix modal padding (#5521) * perf: manage app * feat: enhance model provider handling and update icon references (#5493) * perf: model provider * sdk package * refactor: create llm response (#5499) * feat: add LLM response processing functions, including the creation of stream-based and complete responses * feat: add volta configuration for node and pnpm versions * refactor: update LLM response handling and event structure in tool choice logic * feat: update LLM response structure and integrate with tool choice logic * refactor: clean up imports and remove unused streamResponse function in chat and toolChoice modules * refactor: rename answer variable to answerBuffer for clarity in LLM response handling * feat: enhance LLM response handling with tool options and integrate tools into chat and tool choice logic * refactor: remove volta configuration from package.json * refactor: reorganize LLM response types and ensure default values for token counts * refactor: streamline LLM response handling by consolidating response structure and removing redundant checks * refactor: enhance LLM response handling by consolidating tool options and streamlining event callbacks * fix: build error * refactor: update tool type definitions for consistency in tool handling * feat: llm request function * fix: ts * fix: ts * fix: ahook ts * fix: variable name * update lock * ts version * doc * remove log * fix: translation type * perf: workflow status check * fix: ts * fix: prompt tool call * fix: fix missing plugin interact window & make tag draggable (#5527) * fix: incorrect select quick apps state; filter apps type (#5528) * fix: usesafe translation * perf: add quickapp modal --------- Co-authored-by: 伍闲犬 <whoeverimf5@gmail.com> Co-authored-by: Ctrlz <143257420+ctrlz526@users.noreply.github.com> Co-authored-by: francis <zhichengfan18@gmail.com>
280 lines
6.1 KiB
TypeScript
280 lines
6.1 KiB
TypeScript
import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants';
|
|
import { MongoUsage } from './schema';
|
|
import { type ClientSession } from '../../../common/mongo';
|
|
import { addLog } from '../../../common/system/log';
|
|
import { type ChatNodeUsageType } from '@fastgpt/global/support/wallet/bill/type';
|
|
import {
|
|
type ConcatUsageProps,
|
|
type CreateUsageProps
|
|
} from '@fastgpt/global/support/wallet/usage/api';
|
|
import { i18nT } from '../../../../web/i18n/utils';
|
|
import { formatModelChars2Points } from './utils';
|
|
import { ModelTypeEnum } from '@fastgpt/global/core/ai/model';
|
|
|
|
export async function createUsage(data: CreateUsageProps) {
|
|
try {
|
|
await global.createUsageHandler(data);
|
|
} catch (error) {
|
|
addLog.error('createUsage error', error);
|
|
}
|
|
}
|
|
export async function concatUsage(data: ConcatUsageProps) {
|
|
try {
|
|
await global.concatUsageHandler(data);
|
|
} catch (error) {
|
|
addLog.error('concatUsage error', error);
|
|
}
|
|
}
|
|
|
|
export const createChatUsage = ({
|
|
appName,
|
|
appId,
|
|
pluginId,
|
|
teamId,
|
|
tmbId,
|
|
source,
|
|
flowUsages
|
|
}: {
|
|
appName: string;
|
|
appId?: string;
|
|
pluginId?: string;
|
|
teamId: string;
|
|
tmbId: string;
|
|
source: UsageSourceEnum;
|
|
flowUsages: ChatNodeUsageType[];
|
|
}) => {
|
|
const totalPoints = flowUsages.reduce((sum, item) => sum + (item.totalPoints || 0), 0);
|
|
|
|
createUsage({
|
|
teamId,
|
|
tmbId,
|
|
appName,
|
|
appId,
|
|
pluginId,
|
|
totalPoints,
|
|
source,
|
|
list: flowUsages.map((item) => ({
|
|
moduleName: item.moduleName,
|
|
amount: item.totalPoints || 0,
|
|
model: item.model,
|
|
inputTokens: item.inputTokens,
|
|
outputTokens: item.outputTokens
|
|
}))
|
|
});
|
|
addLog.debug(`Create chat usage`, {
|
|
source,
|
|
teamId,
|
|
totalPoints
|
|
});
|
|
return { totalPoints };
|
|
};
|
|
|
|
export type DatasetTrainingMode = 'paragraph' | 'qa' | 'autoIndex' | 'imageIndex' | 'imageParse';
|
|
export const datasetTrainingUsageIndexMap: Record<DatasetTrainingMode, number> = {
|
|
paragraph: 1,
|
|
qa: 2,
|
|
autoIndex: 3,
|
|
imageIndex: 4,
|
|
imageParse: 5
|
|
};
|
|
export const createTrainingUsage = async ({
|
|
teamId,
|
|
tmbId,
|
|
appName,
|
|
billSource,
|
|
vectorModel,
|
|
agentModel,
|
|
vllmModel,
|
|
session
|
|
}: {
|
|
teamId: string;
|
|
tmbId: string;
|
|
appName: string;
|
|
billSource: UsageSourceEnum;
|
|
vectorModel?: string;
|
|
agentModel?: string;
|
|
vllmModel?: string;
|
|
session?: ClientSession;
|
|
}) => {
|
|
const [{ _id }] = await MongoUsage.create(
|
|
[
|
|
{
|
|
teamId,
|
|
tmbId,
|
|
appName,
|
|
source: billSource,
|
|
totalPoints: 0,
|
|
list: [
|
|
...(vectorModel
|
|
? [
|
|
{
|
|
moduleName: i18nT('account_usage:embedding_index'),
|
|
model: vectorModel,
|
|
amount: 0,
|
|
inputTokens: 0,
|
|
outputTokens: 0
|
|
}
|
|
]
|
|
: []),
|
|
...(agentModel
|
|
? [
|
|
{
|
|
moduleName: i18nT('account_usage:llm_paragraph'),
|
|
model: agentModel,
|
|
amount: 0,
|
|
inputTokens: 0,
|
|
outputTokens: 0
|
|
},
|
|
{
|
|
moduleName: i18nT('account_usage:qa'),
|
|
model: agentModel,
|
|
amount: 0,
|
|
inputTokens: 0,
|
|
outputTokens: 0
|
|
},
|
|
{
|
|
moduleName: i18nT('account_usage:auto_index'),
|
|
model: agentModel,
|
|
amount: 0,
|
|
inputTokens: 0,
|
|
outputTokens: 0
|
|
}
|
|
]
|
|
: []),
|
|
...(vllmModel
|
|
? [
|
|
{
|
|
moduleName: i18nT('account_usage:image_index'),
|
|
model: vllmModel,
|
|
amount: 0,
|
|
inputTokens: 0,
|
|
outputTokens: 0
|
|
},
|
|
{
|
|
moduleName: i18nT('account_usage:image_parse'),
|
|
model: vllmModel,
|
|
amount: 0,
|
|
inputTokens: 0,
|
|
outputTokens: 0
|
|
}
|
|
]
|
|
: [])
|
|
]
|
|
}
|
|
],
|
|
{ session, ordered: true }
|
|
);
|
|
|
|
return { billId: String(_id) };
|
|
};
|
|
|
|
export const createPdfParseUsage = async ({
|
|
teamId,
|
|
tmbId,
|
|
pages
|
|
}: {
|
|
teamId: string;
|
|
tmbId: string;
|
|
pages: number;
|
|
}) => {
|
|
const unitPrice = global.systemEnv?.customPdfParse?.price || 0;
|
|
const totalPoints = pages * unitPrice;
|
|
|
|
createUsage({
|
|
teamId,
|
|
tmbId,
|
|
appName: i18nT('account_usage:pdf_enhanced_parse'),
|
|
totalPoints,
|
|
source: UsageSourceEnum.pdfParse,
|
|
list: [
|
|
{
|
|
moduleName: i18nT('account_usage:pdf_enhanced_parse'),
|
|
amount: totalPoints,
|
|
pages
|
|
}
|
|
]
|
|
});
|
|
};
|
|
|
|
export const pushLLMTrainingUsage = async ({
|
|
teamId,
|
|
tmbId,
|
|
model,
|
|
inputTokens,
|
|
outputTokens,
|
|
billId,
|
|
mode
|
|
}: {
|
|
teamId: string;
|
|
tmbId: string;
|
|
model: string;
|
|
inputTokens: number;
|
|
outputTokens: number;
|
|
billId: string;
|
|
mode: DatasetTrainingMode;
|
|
}) => {
|
|
const index = datasetTrainingUsageIndexMap[mode];
|
|
|
|
// Compute points
|
|
const { totalPoints } = formatModelChars2Points({
|
|
model,
|
|
inputTokens,
|
|
outputTokens
|
|
});
|
|
|
|
concatUsage({
|
|
billId,
|
|
teamId,
|
|
tmbId,
|
|
totalPoints,
|
|
inputTokens,
|
|
outputTokens,
|
|
listIndex: index
|
|
});
|
|
|
|
return { totalPoints };
|
|
};
|
|
|
|
export const createEvaluationUsage = async ({
|
|
teamId,
|
|
tmbId,
|
|
appName,
|
|
model,
|
|
session
|
|
}: {
|
|
teamId: string;
|
|
tmbId: string;
|
|
appName: string;
|
|
model: string;
|
|
session?: ClientSession;
|
|
}) => {
|
|
const [{ _id: usageId }] = await MongoUsage.create(
|
|
[
|
|
{
|
|
teamId,
|
|
tmbId,
|
|
appName,
|
|
source: UsageSourceEnum.evaluation,
|
|
totalPoints: 0,
|
|
list: [
|
|
{
|
|
moduleName: i18nT('account_usage:generate_answer'),
|
|
amount: 0,
|
|
count: 0
|
|
},
|
|
{
|
|
moduleName: i18nT('account_usage:answer_accuracy'),
|
|
amount: 0,
|
|
inputTokens: 0,
|
|
outputTokens: 0,
|
|
model
|
|
}
|
|
]
|
|
}
|
|
],
|
|
{ session, ordered: true }
|
|
);
|
|
|
|
return { usageId };
|
|
};
|