mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-30 02:12:38 +00:00
75 lines
2.3 KiB
TypeScript
75 lines
2.3 KiB
TypeScript
import { PgClient } from '@/service/pg';
|
|
import type { ChatHistoryItemResType } from '@/types/chat';
|
|
import { TaskResponseKeyEnum } from '@/constants/chat';
|
|
import { getVector } from '@/pages/api/openapi/plugin/vector';
|
|
import { countModelPrice } from '@/service/events/pushBill';
|
|
import type { SelectedDatasetType } from '@/types/core/dataset';
|
|
import type { QuoteItemType } from '@/types/chat';
|
|
import { PgDatasetTableName } from '@/constants/plugin';
|
|
import { FlowModuleTypeEnum } from '@/constants/flow';
|
|
import { ModuleDispatchProps } from '@/types/core/modules';
|
|
|
|
type KBSearchProps = ModuleDispatchProps<{
|
|
kbList: SelectedDatasetType;
|
|
similarity: number;
|
|
limit: number;
|
|
userChatInput: string;
|
|
}>;
|
|
export type KBSearchResponse = {
|
|
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
|
|
isEmpty?: boolean;
|
|
unEmpty?: boolean;
|
|
quoteQA: QuoteItemType[];
|
|
};
|
|
|
|
export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSearchResponse> {
|
|
const {
|
|
moduleName,
|
|
inputs: { kbList = [], similarity = 0.4, limit = 5, userChatInput }
|
|
} = props as KBSearchProps;
|
|
|
|
if (kbList.length === 0) {
|
|
return Promise.reject("You didn't choose the knowledge base");
|
|
}
|
|
|
|
if (!userChatInput) {
|
|
return Promise.reject('Your input is empty');
|
|
}
|
|
|
|
// get vector
|
|
const vectorModel = kbList[0]?.vectorModel || global.vectorModels[0];
|
|
const { vectors, tokenLen } = await getVector({
|
|
model: vectorModel.model,
|
|
input: [userChatInput]
|
|
});
|
|
|
|
// search kb
|
|
const res: any = await PgClient.query(
|
|
`BEGIN;
|
|
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
|
|
select kb_id,id,q,a,source,file_id from ${PgDatasetTableName} where kb_id IN (${kbList
|
|
.map((item) => `'${item.kbId}'`)
|
|
.join(',')}) AND vector <#> '[${vectors[0]}]' < -${similarity} order by vector <#> '[${
|
|
vectors[0]
|
|
}]' limit ${limit};
|
|
COMMIT;`
|
|
);
|
|
|
|
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];
|
|
|
|
return {
|
|
isEmpty: searchRes.length === 0 ? true : undefined,
|
|
unEmpty: searchRes.length > 0 ? true : undefined,
|
|
quoteQA: searchRes,
|
|
responseData: {
|
|
moduleType: FlowModuleTypeEnum.kbSearchNode,
|
|
moduleName,
|
|
price: countModelPrice({ model: vectorModel.model, tokens: tokenLen }),
|
|
model: vectorModel.name,
|
|
tokens: tokenLen,
|
|
similarity,
|
|
limit
|
|
}
|
|
};
|
|
}
|