Files
FastGPT/client/src/service/moduleDispatch/kb/search.ts

75 lines
2.3 KiB
TypeScript

import { PgClient } from '@/service/pg';
import type { ChatHistoryItemResType } from '@/types/chat';
import { TaskResponseKeyEnum } from '@/constants/chat';
import { getVector } from '@/pages/api/openapi/plugin/vector';
import { countModelPrice } from '@/service/events/pushBill';
import type { SelectedDatasetType } from '@/types/core/dataset';
import type { QuoteItemType } from '@/types/chat';
import { PgDatasetTableName } from '@/constants/plugin';
import { FlowModuleTypeEnum } from '@/constants/flow';
import { ModuleDispatchProps } from '@/types/core/modules';
type KBSearchProps = ModuleDispatchProps<{
kbList: SelectedDatasetType;
similarity: number;
limit: number;
userChatInput: string;
}>;
export type KBSearchResponse = {
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
isEmpty?: boolean;
unEmpty?: boolean;
quoteQA: QuoteItemType[];
};
export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSearchResponse> {
const {
moduleName,
inputs: { kbList = [], similarity = 0.4, limit = 5, userChatInput }
} = props as KBSearchProps;
if (kbList.length === 0) {
return Promise.reject("You didn't choose the knowledge base");
}
if (!userChatInput) {
return Promise.reject('Your input is empty');
}
// get vector
const vectorModel = kbList[0]?.vectorModel || global.vectorModels[0];
const { vectors, tokenLen } = await getVector({
model: vectorModel.model,
input: [userChatInput]
});
// search kb
const res: any = await PgClient.query(
`BEGIN;
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
select kb_id,id,q,a,source,file_id from ${PgDatasetTableName} where kb_id IN (${kbList
.map((item) => `'${item.kbId}'`)
.join(',')}) AND vector <#> '[${vectors[0]}]' < -${similarity} order by vector <#> '[${
vectors[0]
}]' limit ${limit};
COMMIT;`
);
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];
return {
isEmpty: searchRes.length === 0 ? true : undefined,
unEmpty: searchRes.length > 0 ? true : undefined,
quoteQA: searchRes,
responseData: {
moduleType: FlowModuleTypeEnum.kbSearchNode,
moduleName,
price: countModelPrice({ model: vectorModel.model, tokens: tokenLen }),
model: vectorModel.name,
tokens: tokenLen,
similarity,
limit
}
};
}