mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-28 00:56:26 +00:00

* perf: insert mongo dataset data session * perf: dataset data index * remove delay * rename bill schema * rename bill record * perf: bill table * perf: prompt * perf: sub plan * change the usage count * feat: usage bill * publish usages * doc * 新增团队聊天功能 (#20) * perf: doc * feat 添加标签部分 feat 信息团队标签配置 feat 新增团队同步管理 feat team分享页面 feat 完成team分享页面 feat 实现模糊搜索 style 格式化 fix 修复迷糊匹配 style 样式修改 fix 团队标签功能修复 * fix 修复鉴权功能 * merge 合并代码 * fix 修复引用错误 * fix 修复pr问题 * fix 修复ts格式问题 --------- Co-authored-by: archer <545436317@qq.com> Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com> * update extra plan * fix: ts * format * perf: bill field * feat: standard plan * fix: ts * feat 个人账号页面修改 (#22) * feat 添加标签部分 feat 信息团队标签配置 feat 新增团队同步管理 feat team分享页面 feat 完成team分享页面 feat 实现模糊搜索 style 格式化 fix 修复迷糊匹配 style 样式修改 fix 团队标签功能修复 * fix 修复鉴权功能 * merge 合并代码 * fix 修复引用错误 * fix 修复pr问题 * fix 修复ts格式问题 * feat 修改个人账号页 --------- Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com> * sub plan page (#23) * fix chunk index; error page text * feat: dataset process Integral prediction * feat: stand plan field * feat: sub plan limit * perf: index * query extension * perf: share link push app name * perf: plan point unit * perf: get sub plan * perf: account page * feat 新增套餐详情弹窗代码 (#24) * merge 合并代码 * fix 新增套餐详情弹框 * fix 修复pr问题 * feat: change http node input to prompt editor (#21) * feat: change http node input to prompt editor * fix * split PromptEditor to HttpInput * Team plans (#25) * perf: pay check * perf: team plan test * plan limit check * replace sensitive text * perf: fix some null * collection null check * perf: plans modal * perf: http module * pacakge (#26) * individuation page and pay modal amount (#27) * feat: individuation page * team chat config * pay modal * plan count and replace invalid chars (#29) * fix: user oneapi * fix: training queue * fix: qa queue * perf: remove space chars * replace invalid chars * change httpinput dropdown menu (#28) * perf: http * reseet free plan * perf: plan code to packages * remove llm config to package * perf: code * perf: faq * fix: get team plan --------- Co-authored-by: yst <77910600+yu-and-liu@users.noreply.github.com> Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com> Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
192 lines
5.5 KiB
TypeScript
192 lines
5.5 KiB
TypeScript
/* pg vector crud */
|
|
import { PgDatasetTableName } from '@fastgpt/global/common/vectorStore/constants';
|
|
import { delay } from '@fastgpt/global/common/system/utils';
|
|
import { PgClient, connectPg } from './index';
|
|
import { PgSearchRawType } from '@fastgpt/global/core/dataset/api';
|
|
import { EmbeddingRecallItemType } from '../type';
|
|
import { DeleteDatasetVectorProps, EmbeddingRecallProps, InsertVectorProps } from '../controller.d';
|
|
import dayjs from 'dayjs';
|
|
|
|
export async function initPg() {
|
|
try {
|
|
await connectPg();
|
|
await PgClient.query(`
|
|
CREATE EXTENSION IF NOT EXISTS vector;
|
|
CREATE TABLE IF NOT EXISTS ${PgDatasetTableName} (
|
|
id BIGSERIAL PRIMARY KEY,
|
|
vector VECTOR(1536) NOT NULL,
|
|
team_id VARCHAR(50) NOT NULL,
|
|
dataset_id VARCHAR(50) NOT NULL,
|
|
collection_id VARCHAR(50) NOT NULL,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
|
);
|
|
`);
|
|
|
|
await PgClient.query(
|
|
`CREATE INDEX CONCURRENTLY IF NOT EXISTS vector_index ON ${PgDatasetTableName} USING hnsw (vector vector_ip_ops) WITH (m = 32, ef_construction = 64);`
|
|
);
|
|
await PgClient.query(
|
|
`CREATE INDEX CONCURRENTLY IF NOT EXISTS team_dataset_index ON ${PgDatasetTableName} USING btree(team_id, dataset_id);`
|
|
);
|
|
await PgClient.query(
|
|
` CREATE INDEX CONCURRENTLY IF NOT EXISTS team_collection_index ON ${PgDatasetTableName} USING btree(team_id, collection_id);`
|
|
);
|
|
await PgClient.query(
|
|
`CREATE INDEX CONCURRENTLY IF NOT EXISTS team_id_index ON ${PgDatasetTableName} USING btree(team_id, id);`
|
|
);
|
|
await PgClient.query(
|
|
`CREATE INDEX CONCURRENTLY IF NOT EXISTS create_time_index ON ${PgDatasetTableName} USING btree(createtime);`
|
|
);
|
|
|
|
console.log('init pg successful');
|
|
} catch (error) {
|
|
console.log('init pg error', error);
|
|
}
|
|
}
|
|
|
|
export const insertDatasetDataVector = async (
|
|
props: InsertVectorProps & {
|
|
vectors: number[][];
|
|
retry?: number;
|
|
}
|
|
): Promise<{ insertId: string }> => {
|
|
const { teamId, datasetId, collectionId, vectors, retry = 3 } = props;
|
|
|
|
try {
|
|
const { rows } = await PgClient.insert(PgDatasetTableName, {
|
|
values: [
|
|
[
|
|
{ key: 'vector', value: `[${vectors[0]}]` },
|
|
{ key: 'team_id', value: String(teamId) },
|
|
{ key: 'dataset_id', value: String(datasetId) },
|
|
{ key: 'collection_id', value: String(collectionId) }
|
|
]
|
|
]
|
|
});
|
|
return {
|
|
insertId: rows[0].id
|
|
};
|
|
} catch (error) {
|
|
if (retry <= 0) {
|
|
return Promise.reject(error);
|
|
}
|
|
await delay(500);
|
|
return insertDatasetDataVector({
|
|
...props,
|
|
retry: retry - 1
|
|
});
|
|
}
|
|
};
|
|
|
|
export const deleteDatasetDataVector = async (
|
|
props: DeleteDatasetVectorProps & {
|
|
retry?: number;
|
|
}
|
|
): Promise<any> => {
|
|
const { teamId, id, datasetIds, collectionIds, idList, retry = 2 } = props;
|
|
|
|
const teamIdWhere = `team_id='${String(teamId)}' AND`;
|
|
|
|
const where = await (() => {
|
|
if (id) return `${teamIdWhere} id=${id}`;
|
|
|
|
if (datasetIds) {
|
|
return `${teamIdWhere} dataset_id IN (${datasetIds
|
|
.map((id) => `'${String(id)}'`)
|
|
.join(',')})`;
|
|
}
|
|
|
|
if (collectionIds) {
|
|
return `${teamIdWhere} collection_id IN (${collectionIds
|
|
.map((id) => `'${String(id)}'`)
|
|
.join(',')})`;
|
|
}
|
|
|
|
if (idList) {
|
|
return `${teamIdWhere} id IN (${idList.map((id) => `'${String(id)}'`).join(',')})`;
|
|
}
|
|
return Promise.reject('deleteDatasetData: no where');
|
|
})();
|
|
|
|
try {
|
|
await PgClient.delete(PgDatasetTableName, {
|
|
where: [where]
|
|
});
|
|
} catch (error) {
|
|
if (retry <= 0) {
|
|
return Promise.reject(error);
|
|
}
|
|
await delay(500);
|
|
return deleteDatasetDataVector({
|
|
...props,
|
|
retry: retry - 1
|
|
});
|
|
}
|
|
};
|
|
|
|
export const embeddingRecall = async (
|
|
props: EmbeddingRecallProps & {
|
|
vectors: number[][];
|
|
limit: number;
|
|
retry?: number;
|
|
}
|
|
): Promise<{
|
|
results: EmbeddingRecallItemType[];
|
|
}> => {
|
|
const { datasetIds, vectors, limit, similarity = 0, retry = 2, efSearch = 100 } = props;
|
|
|
|
try {
|
|
const results: any = await PgClient.query(
|
|
`BEGIN;
|
|
SET LOCAL hnsw.ef_search = ${efSearch};
|
|
select id, collection_id, (vector <#> '[${vectors[0]}]') * -1 AS score
|
|
from ${PgDatasetTableName}
|
|
where dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})
|
|
AND vector <#> '[${vectors[0]}]' < -${similarity}
|
|
order by score desc limit ${limit};
|
|
COMMIT;`
|
|
);
|
|
|
|
const rows = results?.[2]?.rows as PgSearchRawType[];
|
|
|
|
return {
|
|
results: rows.map((item) => ({
|
|
id: item.id,
|
|
collectionId: item.collection_id,
|
|
score: item.score
|
|
}))
|
|
};
|
|
} catch (error) {
|
|
if (retry <= 0) {
|
|
return Promise.reject(error);
|
|
}
|
|
return embeddingRecall(props);
|
|
}
|
|
};
|
|
|
|
export const getVectorCountByTeamId = async (teamId: string) => {
|
|
const total = await PgClient.count(PgDatasetTableName, {
|
|
where: [['team_id', String(teamId)]]
|
|
});
|
|
|
|
return total;
|
|
};
|
|
export const getVectorDataByTime = async (start: Date, end: Date) => {
|
|
const { rows } = await PgClient.query<{
|
|
id: string;
|
|
team_id: string;
|
|
dataset_id: string;
|
|
}>(`SELECT id, team_id, dataset_id
|
|
FROM ${PgDatasetTableName}
|
|
WHERE createtime BETWEEN '${dayjs(start).format('YYYY-MM-DD HH:mm:ss')}' AND '${dayjs(end).format(
|
|
'YYYY-MM-DD HH:mm:ss'
|
|
)}';
|
|
`);
|
|
|
|
return rows.map((item) => ({
|
|
id: String(item.id),
|
|
teamId: item.team_id,
|
|
datasetId: item.dataset_id
|
|
}));
|
|
};
|