Files
FastGPT/packages/service/common/vectorStore/pg/controller.ts
Archer 064c64e74c V4.6.9-first commit (#899)
* perf: insert mongo dataset data session

* perf: dataset data index

* remove delay

* rename bill schema

* rename bill record

* perf: bill table

* perf: prompt

* perf: sub plan

* change the usage count

* feat: usage bill

* publish usages

* doc

* 新增团队聊天功能 (#20)

* perf: doc

* feat 添加标签部分

feat 信息团队标签配置

feat 新增团队同步管理

feat team分享页面

feat 完成team分享页面

feat 实现模糊搜索

style 格式化

fix 修复迷糊匹配

style 样式修改

fix 团队标签功能修复

* fix 修复鉴权功能

* merge 合并代码

* fix 修复引用错误

* fix 修复pr问题

* fix 修复ts格式问题

---------

Co-authored-by: archer <545436317@qq.com>
Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com>

* update extra plan

* fix: ts

* format

* perf: bill field

* feat: standard plan

* fix: ts

* feat 个人账号页面修改 (#22)

* feat 添加标签部分

feat 信息团队标签配置

feat 新增团队同步管理

feat team分享页面

feat 完成team分享页面

feat 实现模糊搜索

style 格式化

fix 修复迷糊匹配

style 样式修改

fix 团队标签功能修复

* fix 修复鉴权功能

* merge 合并代码

* fix 修复引用错误

* fix 修复pr问题

* fix 修复ts格式问题

* feat 修改个人账号页

---------

Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com>

* sub plan page (#23)

* fix chunk index; error page text

* feat: dataset process Integral prediction

* feat: stand plan field

* feat: sub plan limit

* perf: index

* query extension

* perf: share link push app name

* perf: plan point unit

* perf: get sub plan

* perf: account page

* feat 新增套餐详情弹窗代码 (#24)

* merge 合并代码

* fix 新增套餐详情弹框

* fix 修复pr问题

* feat: change http node input to prompt editor (#21)

* feat: change http node input to prompt editor

* fix

* split PromptEditor to HttpInput

* Team plans (#25)

* perf: pay check

* perf: team plan test

* plan limit check

* replace sensitive text

* perf: fix some null

* collection null check

* perf: plans modal

* perf: http module

* pacakge (#26)

* individuation page and pay modal amount (#27)

* feat: individuation page

* team chat config

* pay modal

* plan count and replace invalid chars (#29)

* fix: user oneapi

* fix: training queue

* fix: qa queue

* perf: remove space chars

* replace invalid chars

* change httpinput dropdown menu (#28)

* perf: http

* reseet free plan

* perf: plan code to packages

* remove llm config to package

* perf: code

* perf: faq

* fix: get team plan

---------

Co-authored-by: yst <77910600+yu-and-liu@users.noreply.github.com>
Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com>
Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
2024-02-28 13:19:15 +08:00

192 lines
5.5 KiB
TypeScript

/* pg vector crud */
import { PgDatasetTableName } from '@fastgpt/global/common/vectorStore/constants';
import { delay } from '@fastgpt/global/common/system/utils';
import { PgClient, connectPg } from './index';
import { PgSearchRawType } from '@fastgpt/global/core/dataset/api';
import { EmbeddingRecallItemType } from '../type';
import { DeleteDatasetVectorProps, EmbeddingRecallProps, InsertVectorProps } from '../controller.d';
import dayjs from 'dayjs';
export async function initPg() {
try {
await connectPg();
await PgClient.query(`
CREATE EXTENSION IF NOT EXISTS vector;
CREATE TABLE IF NOT EXISTS ${PgDatasetTableName} (
id BIGSERIAL PRIMARY KEY,
vector VECTOR(1536) NOT NULL,
team_id VARCHAR(50) NOT NULL,
dataset_id VARCHAR(50) NOT NULL,
collection_id VARCHAR(50) NOT NULL,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
`);
await PgClient.query(
`CREATE INDEX CONCURRENTLY IF NOT EXISTS vector_index ON ${PgDatasetTableName} USING hnsw (vector vector_ip_ops) WITH (m = 32, ef_construction = 64);`
);
await PgClient.query(
`CREATE INDEX CONCURRENTLY IF NOT EXISTS team_dataset_index ON ${PgDatasetTableName} USING btree(team_id, dataset_id);`
);
await PgClient.query(
` CREATE INDEX CONCURRENTLY IF NOT EXISTS team_collection_index ON ${PgDatasetTableName} USING btree(team_id, collection_id);`
);
await PgClient.query(
`CREATE INDEX CONCURRENTLY IF NOT EXISTS team_id_index ON ${PgDatasetTableName} USING btree(team_id, id);`
);
await PgClient.query(
`CREATE INDEX CONCURRENTLY IF NOT EXISTS create_time_index ON ${PgDatasetTableName} USING btree(createtime);`
);
console.log('init pg successful');
} catch (error) {
console.log('init pg error', error);
}
}
export const insertDatasetDataVector = async (
props: InsertVectorProps & {
vectors: number[][];
retry?: number;
}
): Promise<{ insertId: string }> => {
const { teamId, datasetId, collectionId, vectors, retry = 3 } = props;
try {
const { rows } = await PgClient.insert(PgDatasetTableName, {
values: [
[
{ key: 'vector', value: `[${vectors[0]}]` },
{ key: 'team_id', value: String(teamId) },
{ key: 'dataset_id', value: String(datasetId) },
{ key: 'collection_id', value: String(collectionId) }
]
]
});
return {
insertId: rows[0].id
};
} catch (error) {
if (retry <= 0) {
return Promise.reject(error);
}
await delay(500);
return insertDatasetDataVector({
...props,
retry: retry - 1
});
}
};
export const deleteDatasetDataVector = async (
props: DeleteDatasetVectorProps & {
retry?: number;
}
): Promise<any> => {
const { teamId, id, datasetIds, collectionIds, idList, retry = 2 } = props;
const teamIdWhere = `team_id='${String(teamId)}' AND`;
const where = await (() => {
if (id) return `${teamIdWhere} id=${id}`;
if (datasetIds) {
return `${teamIdWhere} dataset_id IN (${datasetIds
.map((id) => `'${String(id)}'`)
.join(',')})`;
}
if (collectionIds) {
return `${teamIdWhere} collection_id IN (${collectionIds
.map((id) => `'${String(id)}'`)
.join(',')})`;
}
if (idList) {
return `${teamIdWhere} id IN (${idList.map((id) => `'${String(id)}'`).join(',')})`;
}
return Promise.reject('deleteDatasetData: no where');
})();
try {
await PgClient.delete(PgDatasetTableName, {
where: [where]
});
} catch (error) {
if (retry <= 0) {
return Promise.reject(error);
}
await delay(500);
return deleteDatasetDataVector({
...props,
retry: retry - 1
});
}
};
export const embeddingRecall = async (
props: EmbeddingRecallProps & {
vectors: number[][];
limit: number;
retry?: number;
}
): Promise<{
results: EmbeddingRecallItemType[];
}> => {
const { datasetIds, vectors, limit, similarity = 0, retry = 2, efSearch = 100 } = props;
try {
const results: any = await PgClient.query(
`BEGIN;
SET LOCAL hnsw.ef_search = ${efSearch};
select id, collection_id, (vector <#> '[${vectors[0]}]') * -1 AS score
from ${PgDatasetTableName}
where dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})
AND vector <#> '[${vectors[0]}]' < -${similarity}
order by score desc limit ${limit};
COMMIT;`
);
const rows = results?.[2]?.rows as PgSearchRawType[];
return {
results: rows.map((item) => ({
id: item.id,
collectionId: item.collection_id,
score: item.score
}))
};
} catch (error) {
if (retry <= 0) {
return Promise.reject(error);
}
return embeddingRecall(props);
}
};
export const getVectorCountByTeamId = async (teamId: string) => {
const total = await PgClient.count(PgDatasetTableName, {
where: [['team_id', String(teamId)]]
});
return total;
};
export const getVectorDataByTime = async (start: Date, end: Date) => {
const { rows } = await PgClient.query<{
id: string;
team_id: string;
dataset_id: string;
}>(`SELECT id, team_id, dataset_id
FROM ${PgDatasetTableName}
WHERE createtime BETWEEN '${dayjs(start).format('YYYY-MM-DD HH:mm:ss')}' AND '${dayjs(end).format(
'YYYY-MM-DD HH:mm:ss'
)}';
`);
return rows.map((item) => ({
id: String(item.id),
teamId: item.team_id,
datasetId: item.dataset_id
}));
};