mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 05:12:39 +00:00

* rebuild embedding queue * dataset menu * feat: rebuild data api * feat: ui change embedding model * dataset ui * feat: rebuild index ui * rename collection
194 lines
5.4 KiB
TypeScript
194 lines
5.4 KiB
TypeScript
/* pg vector crud */
|
|
import { PgDatasetTableName } from '@fastgpt/global/common/vectorStore/constants';
|
|
import { delay } from '@fastgpt/global/common/system/utils';
|
|
import { PgClient, connectPg } from './index';
|
|
import { PgSearchRawType } from '@fastgpt/global/core/dataset/api';
|
|
import { EmbeddingRecallItemType } from '../type';
|
|
import { DeleteDatasetVectorProps, EmbeddingRecallProps, InsertVectorProps } from '../controller.d';
|
|
import dayjs from 'dayjs';
|
|
|
|
export async function initPg() {
|
|
try {
|
|
await connectPg();
|
|
await PgClient.query(`
|
|
CREATE EXTENSION IF NOT EXISTS vector;
|
|
CREATE TABLE IF NOT EXISTS ${PgDatasetTableName} (
|
|
id BIGSERIAL PRIMARY KEY,
|
|
vector VECTOR(1536) NOT NULL,
|
|
team_id VARCHAR(50) NOT NULL,
|
|
dataset_id VARCHAR(50) NOT NULL,
|
|
collection_id VARCHAR(50) NOT NULL,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
|
);
|
|
`);
|
|
|
|
await PgClient.query(
|
|
`CREATE INDEX CONCURRENTLY IF NOT EXISTS vector_index ON ${PgDatasetTableName} USING hnsw (vector vector_ip_ops) WITH (m = 32, ef_construction = 128);`
|
|
);
|
|
await PgClient.query(
|
|
`CREATE INDEX CONCURRENTLY IF NOT EXISTS team_dataset_collection_index ON ${PgDatasetTableName} USING btree(team_id, dataset_id, collection_id);`
|
|
);
|
|
await PgClient.query(
|
|
`CREATE INDEX CONCURRENTLY IF NOT EXISTS create_time_index ON ${PgDatasetTableName} USING btree(createtime);`
|
|
);
|
|
|
|
console.log('init pg successful');
|
|
} catch (error) {
|
|
console.log('init pg error', error);
|
|
}
|
|
}
|
|
|
|
export const insertDatasetDataVector = async (
|
|
props: InsertVectorProps & {
|
|
vectors: number[][];
|
|
retry?: number;
|
|
}
|
|
): Promise<{ insertId: string }> => {
|
|
const { teamId, datasetId, collectionId, vectors, retry = 3 } = props;
|
|
|
|
try {
|
|
const { rows } = await PgClient.insert(PgDatasetTableName, {
|
|
values: [
|
|
[
|
|
{ key: 'vector', value: `[${vectors[0]}]` },
|
|
{ key: 'team_id', value: String(teamId) },
|
|
{ key: 'dataset_id', value: String(datasetId) },
|
|
{ key: 'collection_id', value: String(collectionId) }
|
|
]
|
|
]
|
|
});
|
|
return {
|
|
insertId: rows[0].id
|
|
};
|
|
} catch (error) {
|
|
if (retry <= 0) {
|
|
return Promise.reject(error);
|
|
}
|
|
await delay(500);
|
|
return insertDatasetDataVector({
|
|
...props,
|
|
retry: retry - 1
|
|
});
|
|
}
|
|
};
|
|
|
|
export const deleteDatasetDataVector = async (
|
|
props: DeleteDatasetVectorProps & {
|
|
retry?: number;
|
|
}
|
|
): Promise<any> => {
|
|
const { teamId, retry = 2 } = props;
|
|
|
|
const teamIdWhere = `team_id='${String(teamId)}' AND`;
|
|
|
|
const where = await (() => {
|
|
if ('id' in props && props.id) return `${teamIdWhere} id=${props.id}`;
|
|
|
|
if ('datasetIds' in props && props.datasetIds) {
|
|
const datasetIdWhere = `dataset_id IN (${props.datasetIds
|
|
.map((id) => `'${String(id)}'`)
|
|
.join(',')})`;
|
|
|
|
if ('collectionIds' in props && props.collectionIds) {
|
|
return `${teamIdWhere} ${datasetIdWhere} AND collection_id IN (${props.collectionIds
|
|
.map((id) => `'${String(id)}'`)
|
|
.join(',')})`;
|
|
}
|
|
|
|
return `${teamIdWhere} ${datasetIdWhere}`;
|
|
}
|
|
|
|
if ('idList' in props && Array.isArray(props.idList)) {
|
|
if (props.idList.length === 0) return;
|
|
return `${teamIdWhere} id IN (${props.idList.map((id) => `'${String(id)}'`).join(',')})`;
|
|
}
|
|
return Promise.reject('deleteDatasetData: no where');
|
|
})();
|
|
|
|
if (!where) return;
|
|
|
|
try {
|
|
await PgClient.delete(PgDatasetTableName, {
|
|
where: [where]
|
|
});
|
|
} catch (error) {
|
|
if (retry <= 0) {
|
|
return Promise.reject(error);
|
|
}
|
|
await delay(500);
|
|
return deleteDatasetDataVector({
|
|
...props,
|
|
retry: retry - 1
|
|
});
|
|
}
|
|
};
|
|
|
|
export const embeddingRecall = async (
|
|
props: EmbeddingRecallProps & {
|
|
vectors: number[][];
|
|
limit: number;
|
|
retry?: number;
|
|
}
|
|
): Promise<{
|
|
results: EmbeddingRecallItemType[];
|
|
}> => {
|
|
const { datasetIds, vectors, limit, retry = 2 } = props;
|
|
|
|
try {
|
|
const results: any = await PgClient.query(
|
|
`BEGIN;
|
|
SET LOCAL hnsw.ef_search = ${global.systemEnv?.pgHNSWEfSearch || 100};
|
|
select id, collection_id, vector <#> '[${vectors[0]}]' AS score
|
|
from ${PgDatasetTableName}
|
|
where dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})
|
|
order by score limit ${limit};
|
|
COMMIT;`
|
|
);
|
|
|
|
const rows = results?.[2]?.rows as PgSearchRawType[];
|
|
|
|
return {
|
|
results: rows.map((item) => ({
|
|
id: item.id,
|
|
collectionId: item.collection_id,
|
|
score: item.score * -1
|
|
}))
|
|
};
|
|
} catch (error) {
|
|
console.log(error);
|
|
if (retry <= 0) {
|
|
return Promise.reject(error);
|
|
}
|
|
return embeddingRecall({
|
|
...props,
|
|
retry: retry - 1
|
|
});
|
|
}
|
|
};
|
|
|
|
export const getVectorCountByTeamId = async (teamId: string) => {
|
|
const total = await PgClient.count(PgDatasetTableName, {
|
|
where: [['team_id', String(teamId)]]
|
|
});
|
|
|
|
return total;
|
|
};
|
|
export const getVectorDataByTime = async (start: Date, end: Date) => {
|
|
const { rows } = await PgClient.query<{
|
|
id: string;
|
|
team_id: string;
|
|
dataset_id: string;
|
|
}>(`SELECT id, team_id, dataset_id
|
|
FROM ${PgDatasetTableName}
|
|
WHERE createtime BETWEEN '${dayjs(start).format('YYYY-MM-DD HH:mm:ss')}' AND '${dayjs(end).format(
|
|
'YYYY-MM-DD HH:mm:ss'
|
|
)}';
|
|
`);
|
|
|
|
return rows.map((item) => ({
|
|
id: String(item.id),
|
|
teamId: item.team_id,
|
|
datasetId: item.dataset_id
|
|
}));
|
|
};
|