Files
FastGPT/packages/service/core/dataset/collection/controller.ts
Archer c30f069f2f V4.9.11 feature (#4969)
* Feat: Images dataset collection (#4941)

* New pic (#4858)

* 更新数据集相关类型,添加图像文件ID和预览URL支持;优化数据集导入功能,新增图像数据集处理组件;修复部分国际化文本;更新文件上传逻辑以支持新功能。

* 与原先代码的差别

* 新增 V4.9.10 更新说明,支持 PG 设置`systemEnv.hnswMaxScanTuples`参数,优化 LLM stream 调用超时,修复全文检索多知识库排序问题。同时更新数据集索引,移除 datasetId 字段以简化查询。

* 更换成fileId_image逻辑,并增加训练队列匹配的逻辑

* 新增图片集合判断逻辑,优化预览URL生成流程,确保仅在数据集为图片集合时生成预览URL,并添加相关日志输出以便调试。

* Refactor Docker Compose configuration to comment out exposed ports for production environments, update image versions for pgvector, fastgpt, and mcp_server, and enhance Redis service with a health check. Additionally, standardize dataset collection labels in constants and improve internationalization strings across multiple languages.

* Enhance TrainingStates component by adding internationalization support for the imageParse training mode and update defaultCounts to include imageParse mode in trainingDetail API.

* Enhance dataset import context by adding additional steps for image dataset import process and improve internationalization strings for modal buttons in the useEditTitle hook.

* Update DatasetImportContext to conditionally render MyStep component based on data source type, improving the import process for non-image datasets.

* Refactor image dataset handling by improving internationalization strings, enhancing error messages, and streamlining the preview URL generation process.

* 图片上传到新建的 dataset_collection_images 表,逻辑跟随更改

* 修改了除了controller的其他部分问题

* 把图片数据集的逻辑整合到controller里面

* 补充i18n

* 补充i18n

* resolve评论:主要是上传逻辑的更改和组件复用

* 图片名称的图标显示

* 修改编译报错的命名问题

* 删除不需要的collectionid部分

* 多余文件的处理和改动一个删除按钮

* 除了loading和统一的imageId,其他都resolve掉的

* 处理图标报错

* 复用了MyPhotoView并采用全部替换的方式将imageFileId变成imageId

* 去除不必要文件修改

* 报错和字段修改

* 增加上传成功后删除临时文件的逻辑以及回退一些修改

* 删除path字段,将图片保存到gridfs内,并修改增删等操作的代码

* 修正编译错误

---------

Co-authored-by: archer <545436317@qq.com>

* perf: image dataset

* feat: insert image

* perf: image icon

* fix: training state

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>

* fix: ts (#4948)

* Thirddatasetmd (#4942)

* add thirddataset.md

* fix thirddataset.md

* fix

* delete wrong png

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: api dataset code

* perf: log

* add secondary.tsx (#4946)

* add secondary.tsx

* fix

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: multiple menu

* perf: i18n

* feat: parse queue (#4960)

* feat: parse queue

* feat: sync parse queue

* fix thirddataset.md (#4962)

* fix thirddataset-4.png (#4963)

* feat: Dataset template import (#4934)

* 模版导入部分除了文档还没写

* 修复模版导入的 build 错误

* Document production

* compress pictures

* Change some constants to variables

---------

Co-authored-by: Archer <545436317@qq.com>

* perf: template import

* doc

* llm pargraph

* bocha tool

* fix: del collection

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>
Co-authored-by: dreamer6680 <1468683855@qq.com>
Co-authored-by: dreamer6680 <146868355@qq.com>
2025-06-06 14:48:44 +08:00

448 lines
13 KiB
TypeScript

import {
DatasetCollectionTypeEnum,
DatasetCollectionDataProcessModeEnum,
DatasetTypeEnum
} from '@fastgpt/global/core/dataset/constants';
import type { CreateDatasetCollectionParams } from '@fastgpt/global/core/dataset/api.d';
import { MongoDatasetCollection } from './schema';
import type {
DatasetCollectionSchemaType,
DatasetSchemaType
} from '@fastgpt/global/core/dataset/type';
import { MongoDatasetTraining } from '../training/schema';
import { MongoDatasetData } from '../data/schema';
import { delImgByRelatedId } from '../../../common/file/image/controller';
import { deleteDatasetDataVector } from '../../../common/vectorDB/controller';
import { delFileByFileIdList } from '../../../common/file/gridfs/controller';
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
import type { ClientSession } from '../../../common/mongo';
import { createOrGetCollectionTags } from './utils';
import { rawText2Chunks } from '../read';
import { checkDatasetLimit } from '../../../support/permission/teamLimit';
import { predictDataLimitLength } from '../../../../global/core/dataset/utils';
import { mongoSessionRun } from '../../../common/mongo/sessionRun';
import { createTrainingUsage } from '../../../support/wallet/usage/controller';
import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants';
import { getLLMModel, getEmbeddingModel, getVlmModel } from '../../ai/model';
import { pushDataListToTrainingQueue, pushDatasetToParseQueue } from '../training/controller';
import { MongoImage } from '../../../common/file/image/schema';
import { hashStr } from '@fastgpt/global/common/string/tools';
import { addDays } from 'date-fns';
import { MongoDatasetDataText } from '../data/dataTextSchema';
import { retryFn } from '@fastgpt/global/common/system/utils';
import { getTrainingModeByCollection } from './utils';
import {
computeChunkSize,
computeChunkSplitter,
computeParagraphChunkDeep,
getAutoIndexSize,
getLLMMaxChunkSize
} from '@fastgpt/global/core/dataset/training/utils';
import { DatasetDataIndexTypeEnum } from '@fastgpt/global/core/dataset/data/constants';
import { clearCollectionImages, removeDatasetImageExpiredTime } from '../image/utils';
export const createCollectionAndInsertData = async ({
dataset,
rawText,
relatedId,
imageIds,
createCollectionParams,
backupParse = false,
billId,
session
}: {
dataset: DatasetSchemaType;
rawText?: string;
relatedId?: string;
imageIds?: string[];
createCollectionParams: CreateOneCollectionParams;
backupParse?: boolean;
billId?: string;
session?: ClientSession;
}) => {
// Adapter 4.9.0
if (createCollectionParams.trainingType === DatasetCollectionDataProcessModeEnum.auto) {
createCollectionParams.trainingType = DatasetCollectionDataProcessModeEnum.chunk;
createCollectionParams.autoIndexes = true;
}
const teamId = createCollectionParams.teamId;
const tmbId = createCollectionParams.tmbId;
// Set default params
const trainingType =
createCollectionParams.trainingType || DatasetCollectionDataProcessModeEnum.chunk;
const chunkSplitter = computeChunkSplitter(createCollectionParams);
const paragraphChunkDeep = computeParagraphChunkDeep(createCollectionParams);
const trainingMode = getTrainingModeByCollection({
trainingType: trainingType,
autoIndexes: createCollectionParams.autoIndexes,
imageIndex: createCollectionParams.imageIndex
});
if (
trainingType === DatasetCollectionDataProcessModeEnum.qa ||
trainingType === DatasetCollectionDataProcessModeEnum.backup
) {
delete createCollectionParams.chunkTriggerType;
delete createCollectionParams.chunkTriggerMinSize;
delete createCollectionParams.dataEnhanceCollectionName;
delete createCollectionParams.imageIndex;
delete createCollectionParams.autoIndexes;
delete createCollectionParams.indexSize;
delete createCollectionParams.qaPrompt;
}
// 1. split chunks or create image chunks
const {
chunks,
chunkSize,
indexSize
}: {
chunks: Array<{
q?: string;
a?: string; // answer or custom content
imageId?: string;
indexes?: string[];
}>;
chunkSize?: number;
indexSize?: number;
} = (() => {
if (rawText) {
const chunkSize = computeChunkSize({
...createCollectionParams,
trainingType,
llmModel: getLLMModel(dataset.agentModel)
});
// Process text chunks
const chunks = rawText2Chunks({
rawText,
chunkTriggerType: createCollectionParams.chunkTriggerType,
chunkTriggerMinSize: createCollectionParams.chunkTriggerMinSize,
chunkSize,
paragraphChunkDeep,
paragraphChunkMinSize: createCollectionParams.paragraphChunkMinSize,
maxSize: getLLMMaxChunkSize(getLLMModel(dataset.agentModel)),
overlapRatio: trainingType === DatasetCollectionDataProcessModeEnum.chunk ? 0.2 : 0,
customReg: chunkSplitter ? [chunkSplitter] : [],
backupParse
});
return {
chunks,
chunkSize,
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
};
}
if (imageIds) {
// Process image chunks
const chunks = imageIds.map((imageId: string) => ({
imageId,
indexes: []
}));
return { chunks };
}
return {
chunks: [],
chunkSize: computeChunkSize({
...createCollectionParams,
trainingType,
llmModel: getLLMModel(dataset.agentModel)
}),
indexSize: createCollectionParams.indexSize ?? getAutoIndexSize(dataset.vectorModel)
};
})();
// 2. auth limit
await checkDatasetLimit({
teamId,
insertLen: predictDataLimitLength(trainingMode, chunks)
});
const fn = async (session: ClientSession) => {
// 3. Create collection
const { _id: collectionId } = await createOneCollection({
...createCollectionParams,
trainingType,
paragraphChunkDeep,
chunkSize,
chunkSplitter,
indexSize,
hashRawText: rawText ? hashStr(rawText) : undefined,
rawTextLength: rawText?.length,
nextSyncTime: (() => {
// ignore auto collections sync for website datasets
if (!dataset.autoSync && dataset.type === DatasetTypeEnum.websiteDataset) return undefined;
if (
[DatasetCollectionTypeEnum.link, DatasetCollectionTypeEnum.apiFile].includes(
createCollectionParams.type
)
) {
return addDays(new Date(), 1);
}
return undefined;
})(),
session
});
// 4. create training bill
const traingBillId = await (async () => {
if (billId) return billId;
const { billId: newBillId } = await createTrainingUsage({
teamId,
tmbId,
appName: createCollectionParams.name,
billSource: UsageSourceEnum.training,
vectorModel: getEmbeddingModel(dataset.vectorModel)?.name,
agentModel: getLLMModel(dataset.agentModel)?.name,
vllmModel: getVlmModel(dataset.vlmModel)?.name,
session
});
return newBillId;
})();
// 5. insert to training queue
const insertResults = await (async () => {
if (rawText || imageIds) {
return pushDataListToTrainingQueue({
teamId,
tmbId,
datasetId: dataset._id,
collectionId,
agentModel: dataset.agentModel,
vectorModel: dataset.vectorModel,
vlmModel: dataset.vlmModel,
indexSize,
mode: trainingMode,
prompt: createCollectionParams.qaPrompt,
billId: traingBillId,
data: chunks.map((item, index) => ({
...item,
indexes: item.indexes?.map((text) => ({
type: DatasetDataIndexTypeEnum.custom,
text
})),
chunkIndex: index
})),
session
});
} else {
await pushDatasetToParseQueue({
teamId,
tmbId,
datasetId: dataset._id,
collectionId,
billId: traingBillId,
session
});
return {
insertLen: 0
};
}
})();
// 6. Remove images ttl index
await removeDatasetImageExpiredTime({
ids: imageIds,
collectionId,
session
});
if (relatedId) {
await MongoImage.updateMany(
{
teamId,
'metadata.relatedId': relatedId
},
{
// Remove expiredTime to avoid ttl expiration
$unset: {
expiredTime: 1
}
},
{
session
}
);
}
return {
collectionId: String(collectionId),
insertResults
};
};
if (session) {
return fn(session);
}
return mongoSessionRun(fn);
};
export type CreateOneCollectionParams = CreateDatasetCollectionParams & {
teamId: string;
tmbId: string;
session?: ClientSession;
};
export async function createOneCollection({ session, ...props }: CreateOneCollectionParams) {
const {
teamId,
parentId,
datasetId,
tags,
fileId,
rawLink,
externalFileId,
externalFileUrl,
apiFileId
} = props;
// Create collection tags
const collectionTags = await createOrGetCollectionTags({ tags, teamId, datasetId, session });
// Create collection
const [collection] = await MongoDatasetCollection.create(
[
{
...props,
_id: undefined,
parentId: parentId || null,
tags: collectionTags,
...(fileId ? { fileId } : {}),
...(rawLink ? { rawLink } : {}),
...(externalFileId ? { externalFileId } : {}),
...(externalFileUrl ? { externalFileUrl } : {}),
...(apiFileId ? { apiFileId } : {})
}
],
{ session, ordered: true }
);
return collection;
}
/* delete collection related images/files */
export const delCollectionRelatedSource = async ({
collections,
session
}: {
collections: {
teamId: string;
fileId?: string;
metadata?: {
relatedImgId?: string;
};
}[];
session?: ClientSession;
}) => {
if (collections.length === 0) return;
const teamId = collections[0].teamId;
if (!teamId) return Promise.reject('teamId is not exist');
const fileIdList = collections.map((item) => item?.fileId || '').filter(Boolean);
const relatedImageIds = collections
.map((item) => item?.metadata?.relatedImgId || '')
.filter(Boolean);
// Delete files and images in parallel
await Promise.all([
// Delete files
delFileByFileIdList({
bucketName: BucketNameEnum.dataset,
fileIdList
}),
// Delete images
delImgByRelatedId({
teamId,
relateIds: relatedImageIds,
session
})
]);
};
/**
* delete collection and it related data
*/
export async function delCollection({
collections,
session,
delImg = true,
delFile = true
}: {
collections: DatasetCollectionSchemaType[];
session: ClientSession;
delImg: boolean;
delFile: boolean;
}) {
if (collections.length === 0) return;
const teamId = collections[0].teamId;
if (!teamId) return Promise.reject('teamId is not exist');
const datasetIds = Array.from(new Set(collections.map((item) => String(item.datasetId))));
const collectionIds = collections.map((item) => String(item._id));
await retryFn(async () => {
await Promise.all([
// Delete training data
MongoDatasetTraining.deleteMany({
teamId,
datasetId: { $in: datasetIds },
collectionId: { $in: collectionIds }
}),
// Delete dataset_data_texts
MongoDatasetDataText.deleteMany({
teamId,
datasetId: { $in: datasetIds },
collectionId: { $in: collectionIds }
}),
// Delete dataset_datas
MongoDatasetData.deleteMany({
teamId,
datasetId: { $in: datasetIds },
collectionId: { $in: collectionIds }
}),
// Delete dataset_images
clearCollectionImages(collectionIds),
// Delete images if needed
...(delImg
? [
delImgByRelatedId({
teamId,
relateIds: collections
.map((item) => item?.metadata?.relatedImgId || '')
.filter(Boolean)
})
]
: []),
// Delete files if needed
...(delFile
? [
delFileByFileIdList({
bucketName: BucketNameEnum.dataset,
fileIdList: collections.map((item) => item?.fileId || '').filter(Boolean)
})
]
: []),
// Delete vector data
deleteDatasetDataVector({ teamId, datasetIds, collectionIds })
]);
// delete collections
await MongoDatasetCollection.deleteMany(
{
teamId,
_id: { $in: collectionIds }
},
{ session }
);
});
}