Files
FastGPT/packages/service/core/ai/utils.ts
Archer c30f069f2f V4.9.11 feature (#4969)
* Feat: Images dataset collection (#4941)

* New pic (#4858)

* 更新数据集相关类型,添加图像文件ID和预览URL支持;优化数据集导入功能,新增图像数据集处理组件;修复部分国际化文本;更新文件上传逻辑以支持新功能。

* 与原先代码的差别

* 新增 V4.9.10 更新说明,支持 PG 设置`systemEnv.hnswMaxScanTuples`参数,优化 LLM stream 调用超时,修复全文检索多知识库排序问题。同时更新数据集索引,移除 datasetId 字段以简化查询。

* 更换成fileId_image逻辑,并增加训练队列匹配的逻辑

* 新增图片集合判断逻辑,优化预览URL生成流程,确保仅在数据集为图片集合时生成预览URL,并添加相关日志输出以便调试。

* Refactor Docker Compose configuration to comment out exposed ports for production environments, update image versions for pgvector, fastgpt, and mcp_server, and enhance Redis service with a health check. Additionally, standardize dataset collection labels in constants and improve internationalization strings across multiple languages.

* Enhance TrainingStates component by adding internationalization support for the imageParse training mode and update defaultCounts to include imageParse mode in trainingDetail API.

* Enhance dataset import context by adding additional steps for image dataset import process and improve internationalization strings for modal buttons in the useEditTitle hook.

* Update DatasetImportContext to conditionally render MyStep component based on data source type, improving the import process for non-image datasets.

* Refactor image dataset handling by improving internationalization strings, enhancing error messages, and streamlining the preview URL generation process.

* 图片上传到新建的 dataset_collection_images 表,逻辑跟随更改

* 修改了除了controller的其他部分问题

* 把图片数据集的逻辑整合到controller里面

* 补充i18n

* 补充i18n

* resolve评论:主要是上传逻辑的更改和组件复用

* 图片名称的图标显示

* 修改编译报错的命名问题

* 删除不需要的collectionid部分

* 多余文件的处理和改动一个删除按钮

* 除了loading和统一的imageId,其他都resolve掉的

* 处理图标报错

* 复用了MyPhotoView并采用全部替换的方式将imageFileId变成imageId

* 去除不必要文件修改

* 报错和字段修改

* 增加上传成功后删除临时文件的逻辑以及回退一些修改

* 删除path字段,将图片保存到gridfs内,并修改增删等操作的代码

* 修正编译错误

---------

Co-authored-by: archer <545436317@qq.com>

* perf: image dataset

* feat: insert image

* perf: image icon

* fix: training state

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>

* fix: ts (#4948)

* Thirddatasetmd (#4942)

* add thirddataset.md

* fix thirddataset.md

* fix

* delete wrong png

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: api dataset code

* perf: log

* add secondary.tsx (#4946)

* add secondary.tsx

* fix

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: multiple menu

* perf: i18n

* feat: parse queue (#4960)

* feat: parse queue

* feat: sync parse queue

* fix thirddataset.md (#4962)

* fix thirddataset-4.png (#4963)

* feat: Dataset template import (#4934)

* 模版导入部分除了文档还没写

* 修复模版导入的 build 错误

* Document production

* compress pictures

* Change some constants to variables

---------

Co-authored-by: Archer <545436317@qq.com>

* perf: template import

* doc

* llm pargraph

* bocha tool

* fix: del collection

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>
Co-authored-by: dreamer6680 <1468683855@qq.com>
Co-authored-by: dreamer6680 <146868355@qq.com>
2025-06-06 14:48:44 +08:00

498 lines
15 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { type LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
import type {
ChatCompletionCreateParamsNonStreaming,
ChatCompletionCreateParamsStreaming,
CompletionFinishReason,
StreamChatType,
UnStreamChatType,
CompletionUsage,
ChatCompletionMessageToolCall
} from '@fastgpt/global/core/ai/type';
import { getLLMModel } from './model';
import { getLLMDefaultUsage } from '@fastgpt/global/core/ai/constants';
import { getNanoid } from '@fastgpt/global/common/string/tools';
import json5 from 'json5';
/*
Count response max token
*/
export const computedMaxToken = ({
maxToken,
model,
min
}: {
maxToken?: number;
model: LLMModelItemType;
min?: number;
}) => {
if (maxToken === undefined) return;
maxToken = Math.min(maxToken, model.maxResponse);
return Math.max(maxToken, min || 0);
};
// FastGPT temperature range: [0,10], ai temperature:[0,2],{0,1]……
export const computedTemperature = ({
model,
temperature
}: {
model: LLMModelItemType;
temperature: number;
}) => {
if (typeof model.maxTemperature !== 'number') return undefined;
temperature = +(model.maxTemperature * (temperature / 10)).toFixed(2);
temperature = Math.max(temperature, 0.01);
return temperature;
};
type CompletionsBodyType =
| ChatCompletionCreateParamsNonStreaming
| ChatCompletionCreateParamsStreaming;
type InferCompletionsBody<T> = T extends { stream: true }
? ChatCompletionCreateParamsStreaming
: T extends { stream: false }
? ChatCompletionCreateParamsNonStreaming
: ChatCompletionCreateParamsNonStreaming | ChatCompletionCreateParamsStreaming;
export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
body: T & {
stop?: string;
},
model: string | LLMModelItemType
): InferCompletionsBody<T> => {
const modelData = typeof model === 'string' ? getLLMModel(model) : model;
if (!modelData) {
return body as unknown as InferCompletionsBody<T>;
}
const response_format = (() => {
if (!body.response_format?.type) return undefined;
if (body.response_format.type === 'json_schema') {
try {
return {
type: 'json_schema',
json_schema: json5.parse(body.response_format?.json_schema as unknown as string)
};
} catch (error) {
throw new Error('Json schema error');
}
}
if (body.response_format.type) {
return {
type: body.response_format.type
};
}
return undefined;
})();
const stop = body.stop ?? undefined;
const requestBody: T = {
...body,
model: modelData.model,
temperature:
typeof body.temperature === 'number'
? computedTemperature({
model: modelData,
temperature: body.temperature
})
: undefined,
...modelData?.defaultConfig,
response_format,
stop: stop?.split('|')
};
// field map
if (modelData.fieldMap) {
Object.entries(modelData.fieldMap).forEach(([sourceKey, targetKey]) => {
// @ts-ignore
requestBody[targetKey] = body[sourceKey];
// @ts-ignore
delete requestBody[sourceKey];
});
}
return requestBody as unknown as InferCompletionsBody<T>;
};
export const llmStreamResponseToAnswerText = async (
response: StreamChatType
): Promise<{
text: string;
usage?: CompletionUsage;
toolCalls?: ChatCompletionMessageToolCall[];
}> => {
let answer = '';
let usage = getLLMDefaultUsage();
let toolCalls: ChatCompletionMessageToolCall[] = [];
let callingTool: { name: string; arguments: string } | null = null;
for await (const part of response) {
usage = part.usage || usage;
const responseChoice = part.choices?.[0]?.delta;
const content = responseChoice?.content || '';
answer += content;
// Tool calls
if (responseChoice?.tool_calls?.length) {
responseChoice.tool_calls.forEach((toolCall, i) => {
const index = toolCall.index ?? i;
// Call new tool
const hasNewTool = toolCall?.function?.name || callingTool;
if (hasNewTool) {
// 有 function name代表新 call 工具
if (toolCall?.function?.name) {
callingTool = {
name: toolCall.function?.name || '',
arguments: toolCall.function?.arguments || ''
};
} else if (callingTool) {
// Continue call(Perhaps the name of the previous function was incomplete)
callingTool.name += toolCall.function?.name || '';
callingTool.arguments += toolCall.function?.arguments || '';
}
if (!callingTool) {
return;
}
// New tool, add to list.
const toolId = getNanoid();
toolCalls[index] = {
...toolCall,
id: toolId,
type: 'function',
function: callingTool
};
callingTool = null;
} else {
/* arg 追加到当前工具的参数里 */
const arg: string = toolCall?.function?.arguments ?? '';
const currentTool = toolCalls[index];
if (currentTool && arg) {
currentTool.function.arguments += arg;
}
}
});
}
}
return {
text: removeDatasetCiteText(parseReasoningContent(answer)[1], false),
usage,
toolCalls
};
};
export const llmUnStreamResponseToAnswerText = async (
response: UnStreamChatType
): Promise<{
text: string;
toolCalls?: ChatCompletionMessageToolCall[];
usage?: CompletionUsage;
}> => {
const answer = response.choices?.[0]?.message?.content || '';
const toolCalls = response.choices?.[0]?.message?.tool_calls;
return {
text: removeDatasetCiteText(parseReasoningContent(answer)[1], false),
usage: response.usage,
toolCalls
};
};
export const formatLLMResponse = async (response: StreamChatType | UnStreamChatType) => {
if ('iterator' in response) {
return llmStreamResponseToAnswerText(response);
}
return llmUnStreamResponseToAnswerText(response);
};
// Parse <think></think> tags to think and answer - unstream response
export const parseReasoningContent = (text: string): [string, string] => {
const regex = /<think>([\s\S]*?)<\/think>/;
const match = text.match(regex);
if (!match) {
return ['', text];
}
const thinkContent = match[1].trim();
// Add answer (remaining text after think tag)
const answerContent = text.slice(match.index! + match[0].length);
return [thinkContent, answerContent];
};
export const removeDatasetCiteText = (text: string, retainDatasetCite: boolean) => {
return retainDatasetCite
? text.replace(/[\[【]id[\]】]\(CITE\)/g, '')
: text
.replace(/[\[【]([a-f0-9]{24})[\]】](?:\([^\)]*\)?)?/g, '')
.replace(/[\[【]id[\]】]\(CITE\)/g, '');
};
// Parse llm stream part
export const parseLLMStreamResponse = () => {
let isInThinkTag: boolean | undefined = undefined;
let startTagBuffer = '';
let endTagBuffer = '';
const thinkStartChars = '<think>';
const thinkEndChars = '</think>';
let citeBuffer = '';
const maxCiteBufferLength = 32; // [Object](CITE)总长度为32
// Buffer
let buffer_finishReason: CompletionFinishReason = null;
let buffer_usage: CompletionUsage = getLLMDefaultUsage();
let buffer_reasoningContent = '';
let buffer_content = '';
/*
parseThinkTag - 只控制是否主动解析 <think></think>,如果接口已经解析了,则不再解析。
retainDatasetCite -
*/
const parsePart = ({
part,
parseThinkTag = true,
retainDatasetCite = true
}: {
part: {
choices: {
delta: {
content?: string | null;
reasoning_content?: string;
};
finish_reason?: CompletionFinishReason;
}[];
usage?: CompletionUsage;
};
parseThinkTag?: boolean;
retainDatasetCite?: boolean;
}): {
reasoningContent: string;
content: string;
responseContent: string;
finishReason: CompletionFinishReason;
} => {
const data = (() => {
buffer_usage = part.usage || buffer_usage;
const finishReason = part.choices?.[0]?.finish_reason || null;
buffer_finishReason = finishReason || buffer_finishReason;
const content = part.choices?.[0]?.delta?.content || '';
// @ts-ignore
const reasoningContent = part.choices?.[0]?.delta?.reasoning_content || '';
const isStreamEnd = !!buffer_finishReason;
// Parse think
const { reasoningContent: parsedThinkReasoningContent, content: parsedThinkContent } =
(() => {
if (reasoningContent || !parseThinkTag) {
isInThinkTag = false;
return { reasoningContent, content };
}
// 如果不在 think 标签中,或者有 reasoningContent(接口已解析),则返回 reasoningContent 和 content
if (isInThinkTag === false) {
return {
reasoningContent: '',
content
};
}
// 检测是否为 think 标签开头的数据
if (isInThinkTag === undefined) {
// Parse content think and answer
startTagBuffer += content;
// 太少内容时候,暂时不解析
if (startTagBuffer.length < thinkStartChars.length) {
if (isStreamEnd) {
const tmpContent = startTagBuffer;
startTagBuffer = '';
return {
reasoningContent: '',
content: tmpContent
};
}
return {
reasoningContent: '',
content: ''
};
}
if (startTagBuffer.startsWith(thinkStartChars)) {
isInThinkTag = true;
return {
reasoningContent: startTagBuffer.slice(thinkStartChars.length),
content: ''
};
}
// 如果未命中 think 标签,则认为不在 think 标签中,返回 buffer 内容作为 content
isInThinkTag = false;
return {
reasoningContent: '',
content: startTagBuffer
};
}
// 确认是 think 标签内容,开始返回 think 内容,并实时检测 </think>
/*
检测 </think> 方案。
存储所有疑似 </think> 的内容,直到检测到完整的 </think> 标签或超出 </think> 长度。
content 返回值包含以下几种情况:
abc - 完全未命中尾标签
abc<th - 命中一部分尾标签
abc</think> - 完全命中尾标签
abc</think>abc - 完全命中尾标签
</think>abc - 完全命中尾标签
k>abc - 命中一部分尾标签
*/
// endTagBuffer 专门用来记录疑似尾标签的内容
if (endTagBuffer) {
endTagBuffer += content;
if (endTagBuffer.includes(thinkEndChars)) {
isInThinkTag = false;
const answer = endTagBuffer.slice(thinkEndChars.length);
return {
reasoningContent: '',
content: answer
};
} else if (endTagBuffer.length >= thinkEndChars.length) {
// 缓存内容超出尾标签长度,且仍未命中 </think>,则认为本次猜测 </think> 失败,仍处于 think 阶段。
const tmp = endTagBuffer;
endTagBuffer = '';
return {
reasoningContent: tmp,
content: ''
};
}
return {
reasoningContent: '',
content: ''
};
} else if (content.includes(thinkEndChars)) {
// 返回内容,完整命中</think>,直接结束
isInThinkTag = false;
const [think, answer] = content.split(thinkEndChars);
return {
reasoningContent: think,
content: answer
};
} else {
// 无 buffer且未命中 </think>,开始疑似 </think> 检测。
for (let i = 1; i < thinkEndChars.length; i++) {
const partialEndTag = thinkEndChars.slice(0, i);
// 命中一部分尾标签
if (content.endsWith(partialEndTag)) {
const think = content.slice(0, -partialEndTag.length);
endTagBuffer += partialEndTag;
return {
reasoningContent: think,
content: ''
};
}
}
}
// 完全未命中尾标签,还是 think 阶段。
return {
reasoningContent: content,
content: ''
};
})();
// Parse datset cite
if (retainDatasetCite) {
return {
reasoningContent: parsedThinkReasoningContent,
content: parsedThinkContent,
responseContent: parsedThinkContent,
finishReason: buffer_finishReason
};
}
// 缓存包含 [ 的字符串,直到超出 maxCiteBufferLength 再一次性返回
const parseCite = (text: string) => {
// 结束时,返回所有剩余内容
if (isStreamEnd) {
const content = citeBuffer + text;
return {
content: removeDatasetCiteText(content, false)
};
}
// 新内容包含 [,初始化缓冲数据
if (text.includes('[') || text.includes('【')) {
const index = text.indexOf('[') !== -1 ? text.indexOf('[') : text.indexOf('【');
const beforeContent = citeBuffer + text.slice(0, index);
citeBuffer = text.slice(index);
// beforeContent 可能是:普通字符串,带 [ 的字符串
return {
content: removeDatasetCiteText(beforeContent, false)
};
}
// 处于 Cite 缓冲区,判断是否满足条件
else if (citeBuffer) {
citeBuffer += text;
// 检查缓冲区长度是否达到完整Quote长度或已经流结束
if (citeBuffer.length >= maxCiteBufferLength) {
const content = removeDatasetCiteText(citeBuffer, false);
citeBuffer = '';
return {
content
};
} else {
// 暂时不返回内容
return { content: '' };
}
}
return {
content: text
};
};
const { content: pasedCiteContent } = parseCite(parsedThinkContent);
return {
reasoningContent: parsedThinkReasoningContent,
content: parsedThinkContent,
responseContent: pasedCiteContent,
finishReason: buffer_finishReason
};
})();
buffer_reasoningContent += data.reasoningContent;
buffer_content += data.content;
return data;
};
const getResponseData = () => {
return {
finish_reason: buffer_finishReason,
usage: buffer_usage,
reasoningContent: buffer_reasoningContent,
content: buffer_content
};
};
const updateFinishReason = (finishReason: CompletionFinishReason) => {
buffer_finishReason = finishReason;
};
return {
parsePart,
getResponseData,
updateFinishReason
};
};