Files
FastGPT/packages/service/core/dataset/read.ts
Archer c30f069f2f V4.9.11 feature (#4969)
* Feat: Images dataset collection (#4941)

* New pic (#4858)

* 更新数据集相关类型,添加图像文件ID和预览URL支持;优化数据集导入功能,新增图像数据集处理组件;修复部分国际化文本;更新文件上传逻辑以支持新功能。

* 与原先代码的差别

* 新增 V4.9.10 更新说明,支持 PG 设置`systemEnv.hnswMaxScanTuples`参数,优化 LLM stream 调用超时,修复全文检索多知识库排序问题。同时更新数据集索引,移除 datasetId 字段以简化查询。

* 更换成fileId_image逻辑,并增加训练队列匹配的逻辑

* 新增图片集合判断逻辑,优化预览URL生成流程,确保仅在数据集为图片集合时生成预览URL,并添加相关日志输出以便调试。

* Refactor Docker Compose configuration to comment out exposed ports for production environments, update image versions for pgvector, fastgpt, and mcp_server, and enhance Redis service with a health check. Additionally, standardize dataset collection labels in constants and improve internationalization strings across multiple languages.

* Enhance TrainingStates component by adding internationalization support for the imageParse training mode and update defaultCounts to include imageParse mode in trainingDetail API.

* Enhance dataset import context by adding additional steps for image dataset import process and improve internationalization strings for modal buttons in the useEditTitle hook.

* Update DatasetImportContext to conditionally render MyStep component based on data source type, improving the import process for non-image datasets.

* Refactor image dataset handling by improving internationalization strings, enhancing error messages, and streamlining the preview URL generation process.

* 图片上传到新建的 dataset_collection_images 表,逻辑跟随更改

* 修改了除了controller的其他部分问题

* 把图片数据集的逻辑整合到controller里面

* 补充i18n

* 补充i18n

* resolve评论:主要是上传逻辑的更改和组件复用

* 图片名称的图标显示

* 修改编译报错的命名问题

* 删除不需要的collectionid部分

* 多余文件的处理和改动一个删除按钮

* 除了loading和统一的imageId,其他都resolve掉的

* 处理图标报错

* 复用了MyPhotoView并采用全部替换的方式将imageFileId变成imageId

* 去除不必要文件修改

* 报错和字段修改

* 增加上传成功后删除临时文件的逻辑以及回退一些修改

* 删除path字段,将图片保存到gridfs内,并修改增删等操作的代码

* 修正编译错误

---------

Co-authored-by: archer <545436317@qq.com>

* perf: image dataset

* feat: insert image

* perf: image icon

* fix: training state

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>

* fix: ts (#4948)

* Thirddatasetmd (#4942)

* add thirddataset.md

* fix thirddataset.md

* fix

* delete wrong png

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: api dataset code

* perf: log

* add secondary.tsx (#4946)

* add secondary.tsx

* fix

---------

Co-authored-by: dreamer6680 <146868355@qq.com>

* perf: multiple menu

* perf: i18n

* feat: parse queue (#4960)

* feat: parse queue

* feat: sync parse queue

* fix thirddataset.md (#4962)

* fix thirddataset-4.png (#4963)

* feat: Dataset template import (#4934)

* 模版导入部分除了文档还没写

* 修复模版导入的 build 错误

* Document production

* compress pictures

* Change some constants to variables

---------

Co-authored-by: Archer <545436317@qq.com>

* perf: template import

* doc

* llm pargraph

* bocha tool

* fix: del collection

---------

Co-authored-by: Zhuangzai fa <143257420+ctrlz526@users.noreply.github.com>
Co-authored-by: dreamer6680 <1468683855@qq.com>
Co-authored-by: dreamer6680 <146868355@qq.com>
2025-06-06 14:48:44 +08:00

249 lines
5.8 KiB
TypeScript

import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
import {
ChunkTriggerConfigTypeEnum,
DatasetSourceReadTypeEnum
} from '@fastgpt/global/core/dataset/constants';
import { readFileContentFromMongo } from '../../common/file/gridfs/controller';
import { urlsFetch } from '../../common/string/cheerio';
import { type TextSplitProps, splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import axios from 'axios';
import { readRawContentByFileBuffer } from '../../common/file/read/utils';
import { parseFileExtensionFromUrl } from '@fastgpt/global/common/string/tools';
import { getApiDatasetRequest } from './apiDataset';
import Papa from 'papaparse';
import type { ApiDatasetServerType } from '@fastgpt/global/core/dataset/apiDataset/type';
export const readFileRawTextByUrl = async ({
teamId,
tmbId,
url,
customPdfParse,
getFormatText,
relatedId
}: {
teamId: string;
tmbId: string;
url: string;
customPdfParse?: boolean;
getFormatText?: boolean;
relatedId: string; // externalFileId / apiFileId
}) => {
const response = await axios({
method: 'get',
url: url,
responseType: 'arraybuffer'
});
const extension = parseFileExtensionFromUrl(url);
const buffer = Buffer.from(response.data, 'binary');
const { rawText } = await readRawContentByFileBuffer({
customPdfParse,
getFormatText,
extension,
teamId,
tmbId,
buffer,
encoding: 'utf-8',
metadata: {
relatedId
}
});
return rawText;
};
/*
fileId - local file, read from mongo
link - request
externalFile/apiFile = request read
*/
export const readDatasetSourceRawText = async ({
teamId,
tmbId,
type,
sourceId,
selector,
externalFileId,
apiDatasetServer,
customPdfParse,
getFormatText
}: {
teamId: string;
tmbId: string;
type: DatasetSourceReadTypeEnum;
sourceId: string;
customPdfParse?: boolean;
getFormatText?: boolean;
selector?: string; // link selector
externalFileId?: string; // external file dataset
apiDatasetServer?: ApiDatasetServerType; // api dataset
}): Promise<{
title?: string;
rawText: string;
}> => {
if (type === DatasetSourceReadTypeEnum.fileLocal) {
const { filename, rawText } = await readFileContentFromMongo({
teamId,
tmbId,
bucketName: BucketNameEnum.dataset,
fileId: sourceId,
customPdfParse,
getFormatText
});
return {
title: filename,
rawText
};
} else if (type === DatasetSourceReadTypeEnum.link) {
const result = await urlsFetch({
urlList: [sourceId],
selector
});
const { title = sourceId, content = '' } = result[0];
if (!content || content === 'Cannot fetch internal url') {
return Promise.reject(content || 'Can not fetch content from link');
}
return {
title,
rawText: content
};
} else if (type === DatasetSourceReadTypeEnum.externalFile) {
if (!externalFileId) return Promise.reject('FileId not found');
const rawText = await readFileRawTextByUrl({
teamId,
tmbId,
url: sourceId,
relatedId: externalFileId,
customPdfParse
});
return {
rawText
};
} else if (type === DatasetSourceReadTypeEnum.apiFile) {
const { title, rawText } = await readApiServerFileContent({
apiDatasetServer,
apiFileId: sourceId,
teamId,
tmbId
});
return {
title,
rawText
};
}
return {
title: '',
rawText: ''
};
};
export const readApiServerFileContent = async ({
apiDatasetServer,
apiFileId,
teamId,
tmbId,
customPdfParse
}: {
apiDatasetServer?: ApiDatasetServerType;
apiFileId: string;
teamId: string;
tmbId: string;
customPdfParse?: boolean;
}): Promise<{
title?: string;
rawText: string;
}> => {
return (await getApiDatasetRequest(apiDatasetServer)).getFileContent({
teamId,
tmbId,
apiFileId,
customPdfParse
});
};
export const rawText2Chunks = ({
rawText,
chunkTriggerType = ChunkTriggerConfigTypeEnum.minSize,
chunkTriggerMinSize = 1000,
backupParse,
chunkSize = 512,
imageIdList,
...splitProps
}: {
rawText: string;
imageIdList?: string[];
chunkTriggerType?: ChunkTriggerConfigTypeEnum;
chunkTriggerMinSize?: number; // maxSize from agent model, not store
backupParse?: boolean;
tableParse?: boolean;
} & TextSplitProps): {
q: string;
a: string;
indexes?: string[];
imageIdList?: string[];
}[] => {
const parseDatasetBackup2Chunks = (rawText: string) => {
const csvArr = Papa.parse(rawText).data as string[][];
const chunks = csvArr
.slice(1)
.map((item) => ({
q: item[0] || '',
a: item[1] || '',
indexes: item.slice(2),
imageIdList
}))
.filter((item) => item.q || item.a);
return {
chunks
};
};
if (backupParse) {
return parseDatasetBackup2Chunks(rawText).chunks;
}
// Chunk condition
// 1. 选择最大值条件,只有超过了最大值(默认为模型的最大值*0.7),才会触发分块
if (chunkTriggerType === ChunkTriggerConfigTypeEnum.maxSize) {
const textLength = rawText.trim().length;
const maxSize = splitProps.maxSize ? splitProps.maxSize * 0.7 : 16000;
if (textLength < maxSize) {
return [
{
q: rawText,
a: '',
imageIdList
}
];
}
}
// 2. 选择最小值条件,只有超过最小值(手动决定)才会触发分块
if (chunkTriggerType !== ChunkTriggerConfigTypeEnum.forceChunk) {
const textLength = rawText.trim().length;
if (textLength < chunkTriggerMinSize) {
return [{ q: rawText, a: '', imageIdList }];
}
}
const { chunks } = splitText2Chunks({
text: rawText,
chunkSize,
...splitProps
});
return chunks.map((item) => ({
q: item,
a: '',
indexes: [],
imageIdList
}));
};