mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00

* agent search demo * edit form force close image select * feat: llm params and doubao1.5 * perf: model error tip * fix: template register path * package
107 lines
2.6 KiB
TypeScript
107 lines
2.6 KiB
TypeScript
import { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
|
|
import {
|
|
ChatCompletionCreateParamsNonStreaming,
|
|
ChatCompletionCreateParamsStreaming,
|
|
StreamChatType
|
|
} from '@fastgpt/global/core/ai/type';
|
|
import { getLLMModel } from './model';
|
|
|
|
/*
|
|
Count response max token
|
|
*/
|
|
export const computedMaxToken = ({
|
|
maxToken,
|
|
model
|
|
}: {
|
|
maxToken?: number;
|
|
model: LLMModelItemType;
|
|
}) => {
|
|
if (maxToken === undefined) return;
|
|
|
|
maxToken = Math.min(maxToken, model.maxResponse);
|
|
return maxToken;
|
|
};
|
|
|
|
// FastGPT temperature range: [0,10], ai temperature:[0,2],{0,1]……
|
|
export const computedTemperature = ({
|
|
model,
|
|
temperature
|
|
}: {
|
|
model: LLMModelItemType;
|
|
temperature: number;
|
|
}) => {
|
|
if (typeof model.maxTemperature !== 'number') return undefined;
|
|
temperature = +(model.maxTemperature * (temperature / 10)).toFixed(2);
|
|
temperature = Math.max(temperature, 0.01);
|
|
|
|
return temperature;
|
|
};
|
|
|
|
type CompletionsBodyType = (
|
|
| ChatCompletionCreateParamsNonStreaming
|
|
| ChatCompletionCreateParamsStreaming
|
|
) & {
|
|
response_format?: any;
|
|
json_schema?: string;
|
|
stop?: string;
|
|
};
|
|
type InferCompletionsBody<T> = T extends { stream: true }
|
|
? ChatCompletionCreateParamsStreaming
|
|
: ChatCompletionCreateParamsNonStreaming;
|
|
|
|
export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
|
|
body: T,
|
|
model: string | LLMModelItemType
|
|
): InferCompletionsBody<T> => {
|
|
const modelData = typeof model === 'string' ? getLLMModel(model) : model;
|
|
if (!modelData) {
|
|
return body as InferCompletionsBody<T>;
|
|
}
|
|
|
|
const response_format = body.response_format;
|
|
const json_schema = body.json_schema ?? undefined;
|
|
const stop = body.stop ?? undefined;
|
|
|
|
const requestBody: T = {
|
|
...body,
|
|
temperature:
|
|
typeof body.temperature === 'number'
|
|
? computedTemperature({
|
|
model: modelData,
|
|
temperature: body.temperature
|
|
})
|
|
: undefined,
|
|
...modelData?.defaultConfig,
|
|
response_format: response_format
|
|
? {
|
|
type: response_format,
|
|
json_schema
|
|
}
|
|
: undefined,
|
|
stop: stop?.split('|')
|
|
};
|
|
|
|
// field map
|
|
if (modelData.fieldMap) {
|
|
Object.entries(modelData.fieldMap).forEach(([sourceKey, targetKey]) => {
|
|
// @ts-ignore
|
|
requestBody[targetKey] = body[sourceKey];
|
|
// @ts-ignore
|
|
delete requestBody[sourceKey];
|
|
});
|
|
}
|
|
|
|
// console.log(requestBody);
|
|
|
|
return requestBody as InferCompletionsBody<T>;
|
|
};
|
|
|
|
export const llmStreamResponseToText = async (response: StreamChatType) => {
|
|
let answer = '';
|
|
for await (const part of response) {
|
|
const content = part.choices?.[0]?.delta?.content || '';
|
|
answer += content;
|
|
}
|
|
return answer;
|
|
};
|