mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-22 20:37:48 +00:00

* update: Add type * fix: update import statement for NextApiRequest type * fix: update imports to use type for LexicalEditor and EditorState * Refactor imports to use 'import type' for type-only imports across multiple files - Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking. - Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management. - Improved code readability and maintainability by distinguishing between value and type imports. * refactor: remove old ESLint configuration and add new rules - Deleted the old ESLint configuration file from the app project. - Added a new ESLint configuration file with updated rules and settings. - Changed imports to use type-only imports in various files for better clarity and performance. - Updated TypeScript configuration to remove unnecessary options. - Added an ESLint ignore file to exclude build and dependency directories from linting. * fix: update imports to use 'import type' for type-only imports in schema files
59 lines
2.1 KiB
TypeScript
59 lines
2.1 KiB
TypeScript
import { cloneDeep } from 'lodash';
|
|
import { type SystemModelItemType } from './type';
|
|
|
|
export const getDefaultLLMModel = () => global?.systemDefaultModel.llm!;
|
|
export const getLLMModel = (model?: string) => {
|
|
if (!model) return getDefaultLLMModel();
|
|
return global.llmModelMap.get(model) || getDefaultLLMModel();
|
|
};
|
|
|
|
export const getDatasetModel = (model?: string) => {
|
|
return (
|
|
Array.from(global.llmModelMap.values())
|
|
?.filter((item) => item.datasetProcess)
|
|
?.find((item) => item.model === model || item.name === model) ?? getDefaultLLMModel()
|
|
);
|
|
};
|
|
export const getVlmModel = (model?: string) => {
|
|
return Array.from(global.llmModelMap.values())
|
|
?.filter((item) => item.vision)
|
|
?.find((item) => item.model === model || item.name === model);
|
|
};
|
|
|
|
export const getDefaultEmbeddingModel = () => global?.systemDefaultModel.embedding!;
|
|
export const getEmbeddingModel = (model?: string) => {
|
|
if (!model) return getDefaultEmbeddingModel();
|
|
return global.embeddingModelMap.get(model) || getDefaultEmbeddingModel();
|
|
};
|
|
|
|
export const getDefaultTTSModel = () => global?.systemDefaultModel.tts!;
|
|
export function getTTSModel(model?: string) {
|
|
if (!model) return getDefaultTTSModel();
|
|
return global.ttsModelMap.get(model) || getDefaultTTSModel();
|
|
}
|
|
|
|
export const getDefaultSTTModel = () => global?.systemDefaultModel.stt!;
|
|
export function getSTTModel(model?: string) {
|
|
if (!model) return getDefaultSTTModel();
|
|
return global.sttModelMap.get(model) || getDefaultSTTModel();
|
|
}
|
|
|
|
export const getDefaultRerankModel = () => global?.systemDefaultModel.rerank!;
|
|
export function getRerankModel(model?: string) {
|
|
if (!model) return getDefaultRerankModel();
|
|
return global.reRankModelMap.get(model) || getDefaultRerankModel();
|
|
}
|
|
|
|
export const findAIModel = (model: string): SystemModelItemType | undefined => {
|
|
return (
|
|
global.llmModelMap.get(model) ||
|
|
global.embeddingModelMap.get(model) ||
|
|
global.ttsModelMap.get(model) ||
|
|
global.sttModelMap.get(model) ||
|
|
global.reRankModelMap.get(model)
|
|
);
|
|
};
|
|
export const findModelFromAlldata = (model: string) => {
|
|
return cloneDeep(global.systemModelList.find((item) => item.model === model));
|
|
};
|