Files
FastGPT/packages/service/core/ai/embedding/index.ts
Theresa 2d3117c5da feat: update ESLint config with @typescript-eslint/consistent-type-imports (#4746)
* update: Add type

* fix: update import statement for NextApiRequest type

* fix: update imports to use type for LexicalEditor and EditorState

* Refactor imports to use 'import type' for type-only imports across multiple files

- Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking.
- Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management.
- Improved code readability and maintainability by distinguishing between value and type imports.

* refactor: remove old ESLint configuration and add new rules

- Deleted the old ESLint configuration file from the app project.
- Added a new ESLint configuration file with updated rules and settings.
- Changed imports to use type-only imports in various files for better clarity and performance.
- Updated TypeScript configuration to remove unnecessary options.
- Added an ESLint ignore file to exclude build and dependency directories from linting.

* fix: update imports to use 'import type' for type-only imports in schema files
2025-05-06 17:33:09 +08:00

109 lines
3.0 KiB
TypeScript

import { type EmbeddingModelItemType } from '@fastgpt/global/core/ai/model.d';
import { getAIApi } from '../config';
import { countPromptTokens } from '../../../common/string/tiktoken/index';
import { EmbeddingTypeEnm } from '@fastgpt/global/core/ai/constants';
import { addLog } from '../../../common/system/log';
type GetVectorProps = {
model: EmbeddingModelItemType;
input: string;
type?: `${EmbeddingTypeEnm}`;
headers?: Record<string, string>;
};
// text to vector
export async function getVectorsByText({ model, input, type, headers }: GetVectorProps) {
if (!input) {
return Promise.reject({
code: 500,
message: 'input is empty'
});
}
try {
const ai = getAIApi();
// input text to vector
const result = await ai.embeddings
.create(
{
...model.defaultConfig,
...(type === EmbeddingTypeEnm.db && model.dbConfig),
...(type === EmbeddingTypeEnm.query && model.queryConfig),
model: model.model,
input: [input]
},
model.requestUrl
? {
path: model.requestUrl,
headers: {
...(model.requestAuth ? { Authorization: `Bearer ${model.requestAuth}` } : {}),
...headers
}
}
: { headers }
)
.then(async (res) => {
if (!res.data) {
addLog.error('Embedding API is not responding', res);
return Promise.reject('Embedding API is not responding');
}
if (!res?.data?.[0]?.embedding) {
console.log(res);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}
const [tokens, vectors] = await Promise.all([
countPromptTokens(input),
Promise.all(
res.data
.map((item) => unityDimensional(item.embedding))
.map((item) => {
if (model.normalization) return normalization(item);
return item;
})
)
]);
return {
tokens,
vectors
};
});
return result;
} catch (error) {
addLog.error(`Embedding Error`, error);
return Promise.reject(error);
}
}
function unityDimensional(vector: number[]) {
if (vector.length > 1536) {
console.log(
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
);
return vector.slice(0, 1536);
}
let resultVector = vector;
const vectorLen = vector.length;
const zeroVector = new Array(1536 - vectorLen).fill(0);
return resultVector.concat(zeroVector);
}
// normalization processing
function normalization(vector: number[]) {
if (vector.some((item) => item > 1)) {
// Calculate the Euclidean norm (L2 norm)
const norm = Math.sqrt(vector.reduce((sum, val) => sum + val * val, 0));
// Normalize the vector by dividing each component by the norm
return vector.map((val) => val / norm);
}
return vector;
}