Files
FastGPT/packages/service/common/vectorDB/controller.ts
Theresa 2d3117c5da feat: update ESLint config with @typescript-eslint/consistent-type-imports (#4746)
* update: Add type

* fix: update import statement for NextApiRequest type

* fix: update imports to use type for LexicalEditor and EditorState

* Refactor imports to use 'import type' for type-only imports across multiple files

- Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking.
- Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management.
- Improved code readability and maintainability by distinguishing between value and type imports.

* refactor: remove old ESLint configuration and add new rules

- Deleted the old ESLint configuration file from the app project.
- Added a new ESLint configuration file with updated rules and settings.
- Changed imports to use type-only imports in various files for better clarity and performance.
- Updated TypeScript configuration to remove unnecessary options.
- Added an ESLint ignore file to exclude build and dependency directories from linting.

* fix: update imports to use 'import type' for type-only imports in schema files
2025-05-06 17:33:09 +08:00

84 lines
2.4 KiB
TypeScript

/* vector crud */
import { PgVectorCtrl } from './pg';
import { ObVectorCtrl } from './oceanbase';
import { getVectorsByText } from '../../core/ai/embedding';
import { type DelDatasetVectorCtrlProps, type InsertVectorProps } from './controller.d';
import { type EmbeddingModelItemType } from '@fastgpt/global/core/ai/model.d';
import { MILVUS_ADDRESS, PG_ADDRESS, OCEANBASE_ADDRESS } from './constants';
import { MilvusCtrl } from './milvus';
import { setRedisCache, getRedisCache, delRedisCache, CacheKeyEnum } from '../redis/cache';
import { throttle } from 'lodash';
import { retryFn } from '@fastgpt/global/common/system/utils';
const getVectorObj = () => {
if (PG_ADDRESS) return new PgVectorCtrl();
if (OCEANBASE_ADDRESS) return new ObVectorCtrl();
if (MILVUS_ADDRESS) return new MilvusCtrl();
return new PgVectorCtrl();
};
const getChcheKey = (teamId: string) => `${CacheKeyEnum.team_vector_count}:${teamId}`;
const onDelCache = throttle((teamId: string) => delRedisCache(getChcheKey(teamId)), 30000, {
leading: true,
trailing: true
});
const Vector = getVectorObj();
export const initVectorStore = Vector.init;
export const recallFromVectorStore = Vector.embRecall;
export const getVectorDataByTime = Vector.getVectorDataByTime;
export const getVectorCountByTeamId = async (teamId: string) => {
const key = getChcheKey(teamId);
const countStr = await getRedisCache(key);
if (countStr) {
return Number(countStr);
}
const count = await Vector.getVectorCountByTeamId(teamId);
await setRedisCache(key, count, 30 * 60);
return count;
};
export const getVectorCountByDatasetId = Vector.getVectorCountByDatasetId;
export const getVectorCountByCollectionId = Vector.getVectorCountByCollectionId;
export const insertDatasetDataVector = async ({
model,
query,
...props
}: InsertVectorProps & {
query: string;
model: EmbeddingModelItemType;
}) => {
return retryFn(async () => {
const { vectors, tokens } = await getVectorsByText({
model,
input: query,
type: 'db'
});
const { insertId } = await Vector.insert({
...props,
vector: vectors[0]
});
onDelCache(props.teamId);
return {
tokens,
insertId
};
});
};
export const deleteDatasetDataVector = async (props: DelDatasetVectorCtrlProps) => {
const result = await Vector.delete(props);
onDelCache(props.teamId);
return result;
};