mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00

* update: Add type * fix: update import statement for NextApiRequest type * fix: update imports to use type for LexicalEditor and EditorState * Refactor imports to use 'import type' for type-only imports across multiple files - Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking. - Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management. - Improved code readability and maintainability by distinguishing between value and type imports. * refactor: remove old ESLint configuration and add new rules - Deleted the old ESLint configuration file from the app project. - Added a new ESLint configuration file with updated rules and settings. - Changed imports to use type-only imports in various files for better clarity and performance. - Updated TypeScript configuration to remove unnecessary options. - Added an ESLint ignore file to exclude build and dependency directories from linting. * fix: update imports to use 'import type' for type-only imports in schema files
84 lines
2.4 KiB
TypeScript
84 lines
2.4 KiB
TypeScript
/* vector crud */
|
|
import { PgVectorCtrl } from './pg';
|
|
import { ObVectorCtrl } from './oceanbase';
|
|
import { getVectorsByText } from '../../core/ai/embedding';
|
|
import { type DelDatasetVectorCtrlProps, type InsertVectorProps } from './controller.d';
|
|
import { type EmbeddingModelItemType } from '@fastgpt/global/core/ai/model.d';
|
|
import { MILVUS_ADDRESS, PG_ADDRESS, OCEANBASE_ADDRESS } from './constants';
|
|
import { MilvusCtrl } from './milvus';
|
|
import { setRedisCache, getRedisCache, delRedisCache, CacheKeyEnum } from '../redis/cache';
|
|
import { throttle } from 'lodash';
|
|
import { retryFn } from '@fastgpt/global/common/system/utils';
|
|
|
|
const getVectorObj = () => {
|
|
if (PG_ADDRESS) return new PgVectorCtrl();
|
|
if (OCEANBASE_ADDRESS) return new ObVectorCtrl();
|
|
if (MILVUS_ADDRESS) return new MilvusCtrl();
|
|
|
|
return new PgVectorCtrl();
|
|
};
|
|
|
|
const getChcheKey = (teamId: string) => `${CacheKeyEnum.team_vector_count}:${teamId}`;
|
|
const onDelCache = throttle((teamId: string) => delRedisCache(getChcheKey(teamId)), 30000, {
|
|
leading: true,
|
|
trailing: true
|
|
});
|
|
|
|
const Vector = getVectorObj();
|
|
|
|
export const initVectorStore = Vector.init;
|
|
export const recallFromVectorStore = Vector.embRecall;
|
|
export const getVectorDataByTime = Vector.getVectorDataByTime;
|
|
|
|
export const getVectorCountByTeamId = async (teamId: string) => {
|
|
const key = getChcheKey(teamId);
|
|
|
|
const countStr = await getRedisCache(key);
|
|
if (countStr) {
|
|
return Number(countStr);
|
|
}
|
|
|
|
const count = await Vector.getVectorCountByTeamId(teamId);
|
|
|
|
await setRedisCache(key, count, 30 * 60);
|
|
|
|
return count;
|
|
};
|
|
|
|
export const getVectorCountByDatasetId = Vector.getVectorCountByDatasetId;
|
|
export const getVectorCountByCollectionId = Vector.getVectorCountByCollectionId;
|
|
|
|
export const insertDatasetDataVector = async ({
|
|
model,
|
|
query,
|
|
...props
|
|
}: InsertVectorProps & {
|
|
query: string;
|
|
model: EmbeddingModelItemType;
|
|
}) => {
|
|
return retryFn(async () => {
|
|
const { vectors, tokens } = await getVectorsByText({
|
|
model,
|
|
input: query,
|
|
type: 'db'
|
|
});
|
|
const { insertId } = await Vector.insert({
|
|
...props,
|
|
vector: vectors[0]
|
|
});
|
|
|
|
onDelCache(props.teamId);
|
|
|
|
return {
|
|
tokens,
|
|
insertId
|
|
};
|
|
});
|
|
};
|
|
|
|
export const deleteDatasetDataVector = async (props: DelDatasetVectorCtrlProps) => {
|
|
const result = await Vector.delete(props);
|
|
onDelCache(props.teamId);
|
|
return result;
|
|
};
|