Files
FastGPT/packages/service/core/ai/utils.ts
Archer df4d6f86ce fix: delete dataset field error (#3925)
* fix: collection list count

* fix: collection list count

* update doc

* perf: tts selector ui

* fix: delete dataset field error

* doc
2025-02-28 12:29:18 +08:00

240 lines
6.9 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
import {
ChatCompletionCreateParamsNonStreaming,
ChatCompletionCreateParamsStreaming,
StreamChatType
} from '@fastgpt/global/core/ai/type';
import { getLLMModel } from './model';
/*
Count response max token
*/
export const computedMaxToken = ({
maxToken,
model
}: {
maxToken?: number;
model: LLMModelItemType;
}) => {
if (maxToken === undefined) return;
maxToken = Math.min(maxToken, model.maxResponse);
return maxToken;
};
// FastGPT temperature range: [0,10], ai temperature:[0,2],{0,1]……
export const computedTemperature = ({
model,
temperature
}: {
model: LLMModelItemType;
temperature: number;
}) => {
if (typeof model.maxTemperature !== 'number') return undefined;
temperature = +(model.maxTemperature * (temperature / 10)).toFixed(2);
temperature = Math.max(temperature, 0.01);
return temperature;
};
type CompletionsBodyType =
| ChatCompletionCreateParamsNonStreaming
| ChatCompletionCreateParamsStreaming;
type InferCompletionsBody<T> = T extends { stream: true }
? ChatCompletionCreateParamsStreaming
: T extends { stream: false }
? ChatCompletionCreateParamsNonStreaming
: ChatCompletionCreateParamsNonStreaming | ChatCompletionCreateParamsStreaming;
export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
body: T & {
response_format?: any;
json_schema?: string;
stop?: string;
},
model: string | LLMModelItemType
): InferCompletionsBody<T> => {
const modelData = typeof model === 'string' ? getLLMModel(model) : model;
if (!modelData) {
return body as unknown as InferCompletionsBody<T>;
}
const response_format = body.response_format;
const json_schema = body.json_schema ?? undefined;
const stop = body.stop ?? undefined;
const requestBody: T = {
...body,
temperature:
typeof body.temperature === 'number'
? computedTemperature({
model: modelData,
temperature: body.temperature
})
: undefined,
...modelData?.defaultConfig,
response_format: response_format
? {
type: response_format,
json_schema
}
: undefined,
stop: stop?.split('|')
};
// field map
if (modelData.fieldMap) {
Object.entries(modelData.fieldMap).forEach(([sourceKey, targetKey]) => {
// @ts-ignore
requestBody[targetKey] = body[sourceKey];
// @ts-ignore
delete requestBody[sourceKey];
});
}
return requestBody as unknown as InferCompletionsBody<T>;
};
export const llmStreamResponseToAnswerText = async (response: StreamChatType) => {
let answer = '';
for await (const part of response) {
const content = part.choices?.[0]?.delta?.content || '';
answer += content;
}
return parseReasoningContent(answer)[1];
};
// Parse <think></think> tags to think and answer - unstream response
export const parseReasoningContent = (text: string): [string, string] => {
const regex = /<think>([\s\S]*?)<\/think>/;
const match = text.match(regex);
if (!match) {
return ['', text];
}
const thinkContent = match[1].trim();
// Add answer (remaining text after think tag)
const answerContent = text.slice(match.index! + match[0].length);
return [thinkContent, answerContent];
};
// Parse <think></think> tags to think and answer - stream response
export const parseReasoningStreamContent = () => {
let isInThinkTag: boolean | undefined;
const startTag = '<think>';
let startTagBuffer = '';
const endTag = '</think>';
let endTagBuffer = '';
/*
parseReasoning - 只控制是否主动解析 <think></think>,如果接口已经解析了,仍然会返回 think 内容。
*/
const parsePart = (
part: {
choices: {
delta: {
content?: string;
reasoning_content?: string;
};
}[];
},
parseReasoning = false
): [string, string] => {
const content = part.choices?.[0]?.delta?.content || '';
// @ts-ignore
const reasoningContent = part.choices?.[0]?.delta?.reasoning_content || '';
if (reasoningContent || !parseReasoning) {
isInThinkTag = false;
return [reasoningContent, content];
}
if (!content) {
return ['', ''];
}
// 如果不在 think 标签中,或者有 reasoningContent(接口已解析),则返回 reasoningContent 和 content
if (isInThinkTag === false) {
return ['', content];
}
// 检测是否为 think 标签开头的数据
if (isInThinkTag === undefined) {
// Parse content think and answer
startTagBuffer += content;
// 太少内容时候,暂时不解析
if (startTagBuffer.length < startTag.length) {
return ['', ''];
}
if (startTagBuffer.startsWith(startTag)) {
isInThinkTag = true;
return [startTagBuffer.slice(startTag.length), ''];
}
// 如果未命中 think 标签,则认为不在 think 标签中,返回 buffer 内容作为 content
isInThinkTag = false;
return ['', startTagBuffer];
}
// 确认是 think 标签内容,开始返回 think 内容,并实时检测 </think>
/*
检测 </think> 方案。
存储所有疑似 </think> 的内容,直到检测到完整的 </think> 标签或超出 </think> 长度。
content 返回值包含以下几种情况:
abc - 完全未命中尾标签
abc<th - 命中一部分尾标签
abc</think> - 完全命中尾标签
abc</think>abc - 完全命中尾标签
</think>abc - 完全命中尾标签
k>abc - 命中一部分尾标签
*/
// endTagBuffer 专门用来记录疑似尾标签的内容
if (endTagBuffer) {
endTagBuffer += content;
if (endTagBuffer.includes(endTag)) {
isInThinkTag = false;
const answer = endTagBuffer.slice(endTag.length);
return ['', answer];
} else if (endTagBuffer.length >= endTag.length) {
// 缓存内容超出尾标签长度,且仍未命中 </think>,则认为本次猜测 </think> 失败,仍处于 think 阶段。
const tmp = endTagBuffer;
endTagBuffer = '';
return [tmp, ''];
}
return ['', ''];
} else if (content.includes(endTag)) {
// 返回内容,完整命中</think>,直接结束
isInThinkTag = false;
const [think, answer] = content.split(endTag);
return [think, answer];
} else {
// 无 buffer且未命中 </think>,开始疑似 </think> 检测。
for (let i = 1; i < endTag.length; i++) {
const partialEndTag = endTag.slice(0, i);
// 命中一部分尾标签
if (content.endsWith(partialEndTag)) {
const think = content.slice(0, -partialEndTag.length);
endTagBuffer += partialEndTag;
return [think, ''];
}
}
}
// 完全未命中尾标签,还是 think 阶段。
return [content, ''];
};
const getStartTagBuffer = () => startTagBuffer;
return {
parsePart,
getStartTagBuffer
};
};