Files
FastGPT/packages/service/core/ai/embedding/index.ts
Archer 51e17a47fa feat: normalization embedding;feat: model top_p param config (#3723)
* edit form force close image select

* model config

* feat: normalization embedding

* perf: add share page title force refresh
2025-02-08 12:16:46 +08:00

109 lines
3.0 KiB
TypeScript

import { EmbeddingModelItemType } from '@fastgpt/global/core/ai/model.d';
import { getAIApi } from '../config';
import { countPromptTokens } from '../../../common/string/tiktoken/index';
import { EmbeddingTypeEnm } from '@fastgpt/global/core/ai/constants';
import { addLog } from '../../../common/system/log';
type GetVectorProps = {
model: EmbeddingModelItemType;
input: string;
type?: `${EmbeddingTypeEnm}`;
};
// text to vector
export async function getVectorsByText({ model, input, type }: GetVectorProps) {
if (!input) {
return Promise.reject({
code: 500,
message: 'input is empty'
});
}
try {
const ai = getAIApi();
// input text to vector
const result = await ai.embeddings
.create(
{
...model.defaultConfig,
...(type === EmbeddingTypeEnm.db && model.dbConfig),
...(type === EmbeddingTypeEnm.query && model.queryConfig),
model: model.model,
input: [input]
},
model.requestUrl
? {
path: model.requestUrl,
headers: model.requestAuth
? {
Authorization: `Bearer ${model.requestAuth}`
}
: undefined
}
: {}
)
.then(async (res) => {
if (!res.data) {
addLog.error('Embedding API is not responding', res);
return Promise.reject('Embedding API is not responding');
}
if (!res?.data?.[0]?.embedding) {
console.log(res);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}
const [tokens, vectors] = await Promise.all([
countPromptTokens(input),
Promise.all(
res.data
.map((item) => unityDimensional(item.embedding))
.map((item) => {
if (model.normalization) return normalization(item);
return item;
})
)
]);
return {
tokens,
vectors
};
});
return result;
} catch (error) {
addLog.error(`Embedding Error`, error);
return Promise.reject(error);
}
}
function unityDimensional(vector: number[]) {
if (vector.length > 1536) {
console.log(
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
);
return vector.slice(0, 1536);
}
let resultVector = vector;
const vectorLen = vector.length;
const zeroVector = new Array(1536 - vectorLen).fill(0);
return resultVector.concat(zeroVector);
}
// normalization processing
function normalization(vector: number[]) {
if (vector.some((item) => item > 1)) {
// Calculate the Euclidean norm (L2 norm)
const norm = Math.sqrt(vector.reduce((sum, val) => sum + val * val, 0));
// Normalize the vector by dividing each component by the norm
return vector.map((val) => val / norm);
}
return vector;
}