Files
FastGPT/packages/service/core/ai/embedding/index.ts
Archer 439c819ff1 4.8 preview (#1288)
* Revert "lafAccount add pat & re request when token invalid (#76)" (#77)

This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be.

* perf: workflow ux

* system config

* Newflow (#89)

* docs: Add doc for Xinference (#1266)

Signed-off-by: Carson Yang <yangchuansheng33@gmail.com>

* Revert "lafAccount add pat & re request when token invalid (#76)" (#77)

This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be.

* perf: workflow ux

* system config

* Revert "lafAccount add pat & re request when token invalid (#76)" (#77)

This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be.

* Revert "lafAccount add pat & re request when token invalid (#76)" (#77)

This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be.

* Revert "lafAccount add pat & re request when token invalid (#76)" (#77)

This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be.

* rename code

* move code

* update flow

* input type selector

* perf: workflow runtime

* feat: node adapt newflow

* feat: adapt plugin

* feat: 360 connection

* check workflow

* perf: flow 性能

* change plugin input type (#81)

* change plugin input type

* plugin label mode

* perf: nodecard

* debug

* perf: debug ui

* connection ui

* change workflow ui (#82)

* feat: workflow debug

* adapt openAPI for new workflow (#83)

* adapt openAPI for new workflow

* i18n

* perf: plugin debug

* plugin input ui

* delete

* perf: global variable select

* fix rebase

* perf: workflow performance

* feat: input render type icon

* input icon

* adapt flow (#84)

* adapt newflow

* temp

* temp

* fix

* feat: app schedule trigger

* feat: app schedule trigger

* perf: schedule ui

* feat: ioslatevm run js code

* perf: workflow varialbe table ui

* feat: adapt simple mode

* feat: adapt input params

* output

* feat: adapt tamplate

* fix: ts

* add if-else module (#86)

* perf: worker

* if else node

* perf: tiktoken worker

* fix: ts

* perf: tiktoken

* fix if-else node (#87)

* fix if-else node

* type

* fix

* perf: audio render

* perf: Parallel worker

* log

* perf: if else node

* adapt plugin

* prompt

* perf: reference ui

* reference ui

* handle ux

* template ui and plugin tool

* adapt v1 workflow

* adapt v1 workflow completions

* perf: time variables

* feat: workflow keyboard shortcuts

* adapt v1 workflow

* update workflow example doc (#88)

* fix: simple mode select tool

---------

Signed-off-by: Carson Yang <yangchuansheng33@gmail.com>
Co-authored-by: Carson Yang <yangchuansheng33@gmail.com>
Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>

* doc

* perf: extract node

* extra node field

* update plugin version

* doc

* variable

* change doc & fix prompt editor (#90)

* fold workflow code

* value type label

---------

Signed-off-by: Carson Yang <yangchuansheng33@gmail.com>
Co-authored-by: Carson Yang <yangchuansheng33@gmail.com>
Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
2024-04-25 17:51:20 +08:00

76 lines
2.0 KiB
TypeScript

import { VectorModelItemType } from '@fastgpt/global/core/ai/model.d';
import { getAIApi } from '../config';
import { countPromptTokens } from '../../../common/string/tiktoken/index';
import { EmbeddingTypeEnm } from '@fastgpt/global/core/ai/constants';
type GetVectorProps = {
model: VectorModelItemType;
input: string;
type?: `${EmbeddingTypeEnm}`;
};
// text to vector
export async function getVectorsByText({ model, input, type }: GetVectorProps) {
if (!input) {
return Promise.reject({
code: 500,
message: 'input is empty'
});
}
try {
const ai = getAIApi();
// input text to vector
const result = await ai.embeddings
.create({
...model.defaultConfig,
...(type === EmbeddingTypeEnm.db && model.dbConfig),
...(type === EmbeddingTypeEnm.query && model.queryConfig),
model: model.model,
input: [input]
})
.then(async (res) => {
if (!res.data) {
return Promise.reject('Embedding API 404');
}
if (!res?.data?.[0]?.embedding) {
console.log(res);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}
const [tokens, vectors] = await Promise.all([
countPromptTokens(input),
Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
]);
return {
tokens,
vectors
};
});
return result;
} catch (error) {
console.log(`Embedding Error`, error);
return Promise.reject(error);
}
}
function unityDimensional(vector: number[]) {
if (vector.length > 1536) {
console.log(
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
);
return vector.slice(0, 1536);
}
let resultVector = vector;
const vectorLen = vector.length;
const zeroVector = new Array(1536 - vectorLen).fill(0);
return resultVector.concat(zeroVector);
}