mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 21:13:50 +00:00

* Revert "lafAccount add pat & re request when token invalid (#76)" (#77) This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be. * perf: workflow ux * system config * Newflow (#89) * docs: Add doc for Xinference (#1266) Signed-off-by: Carson Yang <yangchuansheng33@gmail.com> * Revert "lafAccount add pat & re request when token invalid (#76)" (#77) This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be. * perf: workflow ux * system config * Revert "lafAccount add pat & re request when token invalid (#76)" (#77) This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be. * Revert "lafAccount add pat & re request when token invalid (#76)" (#77) This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be. * Revert "lafAccount add pat & re request when token invalid (#76)" (#77) This reverts commit 83d85dfe37adcaef4833385ea52ee79fd84720be. * rename code * move code * update flow * input type selector * perf: workflow runtime * feat: node adapt newflow * feat: adapt plugin * feat: 360 connection * check workflow * perf: flow 性能 * change plugin input type (#81) * change plugin input type * plugin label mode * perf: nodecard * debug * perf: debug ui * connection ui * change workflow ui (#82) * feat: workflow debug * adapt openAPI for new workflow (#83) * adapt openAPI for new workflow * i18n * perf: plugin debug * plugin input ui * delete * perf: global variable select * fix rebase * perf: workflow performance * feat: input render type icon * input icon * adapt flow (#84) * adapt newflow * temp * temp * fix * feat: app schedule trigger * feat: app schedule trigger * perf: schedule ui * feat: ioslatevm run js code * perf: workflow varialbe table ui * feat: adapt simple mode * feat: adapt input params * output * feat: adapt tamplate * fix: ts * add if-else module (#86) * perf: worker * if else node * perf: tiktoken worker * fix: ts * perf: tiktoken * fix if-else node (#87) * fix if-else node * type * fix * perf: audio render * perf: Parallel worker * log * perf: if else node * adapt plugin * prompt * perf: reference ui * reference ui * handle ux * template ui and plugin tool * adapt v1 workflow * adapt v1 workflow completions * perf: time variables * feat: workflow keyboard shortcuts * adapt v1 workflow * update workflow example doc (#88) * fix: simple mode select tool --------- Signed-off-by: Carson Yang <yangchuansheng33@gmail.com> Co-authored-by: Carson Yang <yangchuansheng33@gmail.com> Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com> * doc * perf: extract node * extra node field * update plugin version * doc * variable * change doc & fix prompt editor (#90) * fold workflow code * value type label --------- Signed-off-by: Carson Yang <yangchuansheng33@gmail.com> Co-authored-by: Carson Yang <yangchuansheng33@gmail.com> Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
76 lines
2.0 KiB
TypeScript
76 lines
2.0 KiB
TypeScript
import { VectorModelItemType } from '@fastgpt/global/core/ai/model.d';
|
|
import { getAIApi } from '../config';
|
|
import { countPromptTokens } from '../../../common/string/tiktoken/index';
|
|
import { EmbeddingTypeEnm } from '@fastgpt/global/core/ai/constants';
|
|
|
|
type GetVectorProps = {
|
|
model: VectorModelItemType;
|
|
input: string;
|
|
type?: `${EmbeddingTypeEnm}`;
|
|
};
|
|
|
|
// text to vector
|
|
export async function getVectorsByText({ model, input, type }: GetVectorProps) {
|
|
if (!input) {
|
|
return Promise.reject({
|
|
code: 500,
|
|
message: 'input is empty'
|
|
});
|
|
}
|
|
|
|
try {
|
|
const ai = getAIApi();
|
|
|
|
// input text to vector
|
|
const result = await ai.embeddings
|
|
.create({
|
|
...model.defaultConfig,
|
|
...(type === EmbeddingTypeEnm.db && model.dbConfig),
|
|
...(type === EmbeddingTypeEnm.query && model.queryConfig),
|
|
model: model.model,
|
|
input: [input]
|
|
})
|
|
.then(async (res) => {
|
|
if (!res.data) {
|
|
return Promise.reject('Embedding API 404');
|
|
}
|
|
if (!res?.data?.[0]?.embedding) {
|
|
console.log(res);
|
|
// @ts-ignore
|
|
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
|
|
}
|
|
|
|
const [tokens, vectors] = await Promise.all([
|
|
countPromptTokens(input),
|
|
Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
|
|
]);
|
|
|
|
return {
|
|
tokens,
|
|
vectors
|
|
};
|
|
});
|
|
|
|
return result;
|
|
} catch (error) {
|
|
console.log(`Embedding Error`, error);
|
|
|
|
return Promise.reject(error);
|
|
}
|
|
}
|
|
|
|
function unityDimensional(vector: number[]) {
|
|
if (vector.length > 1536) {
|
|
console.log(
|
|
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
|
|
);
|
|
return vector.slice(0, 1536);
|
|
}
|
|
let resultVector = vector;
|
|
const vectorLen = vector.length;
|
|
|
|
const zeroVector = new Array(1536 - vectorLen).fill(0);
|
|
|
|
return resultVector.concat(zeroVector);
|
|
}
|