mirror of
https://github.com/labring/FastGPT.git
synced 2025-08-02 12:48:30 +00:00

Co-authored-by: Mufei <327958099@qq.com> Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
223 lines
6.0 KiB
TypeScript
223 lines
6.0 KiB
TypeScript
import { adaptChat2GptMessages } from '@fastgpt/global/core/chat/adapt';
|
||
import { ChatContextFilter } from '@fastgpt/service/core/chat/utils';
|
||
import { countMessagesTokens } from '@fastgpt/global/common/string/tiktoken';
|
||
import type { ChatItemType } from '@fastgpt/global/core/chat/type.d';
|
||
import { ChatRoleEnum } from '@fastgpt/global/core/chat/constants';
|
||
import { getAIApi } from '@fastgpt/service/core/ai/config';
|
||
import type {
|
||
ClassifyQuestionAgentItemType,
|
||
ModuleDispatchResponse
|
||
} from '@fastgpt/global/core/module/type.d';
|
||
import { ModuleInputKeyEnum, ModuleOutputKeyEnum } from '@fastgpt/global/core/module/constants';
|
||
import type { ModuleDispatchProps } from '@fastgpt/global/core/module/type.d';
|
||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||
import { Prompt_CQJson } from '@/global/core/prompt/agent';
|
||
import { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
|
||
import { ModelTypeEnum, getLLMModel } from '@fastgpt/service/core/ai/model';
|
||
import { getHistories } from '../utils';
|
||
import { formatModelChars2Points } from '@fastgpt/service/support/wallet/usage/utils';
|
||
|
||
type Props = ModuleDispatchProps<{
|
||
[ModuleInputKeyEnum.aiModel]: string;
|
||
[ModuleInputKeyEnum.aiSystemPrompt]?: string;
|
||
[ModuleInputKeyEnum.history]?: ChatItemType[] | number;
|
||
[ModuleInputKeyEnum.userChatInput]: string;
|
||
[ModuleInputKeyEnum.agents]: ClassifyQuestionAgentItemType[];
|
||
}>;
|
||
type CQResponse = ModuleDispatchResponse<{
|
||
[key: string]: any;
|
||
}>;
|
||
|
||
const agentFunName = 'classify_question';
|
||
|
||
/* request openai chat */
|
||
export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse> => {
|
||
const {
|
||
user,
|
||
module: { name },
|
||
histories,
|
||
params: { model, history = 6, agents, userChatInput }
|
||
} = props as Props;
|
||
|
||
if (!userChatInput) {
|
||
return Promise.reject('Input is empty');
|
||
}
|
||
|
||
const cqModel = getLLMModel(model);
|
||
|
||
const chatHistories = getHistories(history, histories);
|
||
|
||
const { arg, tokens } = await (async () => {
|
||
if (cqModel.toolChoice) {
|
||
return toolChoice({
|
||
...props,
|
||
histories: chatHistories,
|
||
cqModel
|
||
});
|
||
}
|
||
return completions({
|
||
...props,
|
||
histories: chatHistories,
|
||
cqModel
|
||
});
|
||
})();
|
||
|
||
const result = agents.find((item) => item.key === arg?.type) || agents[agents.length - 1];
|
||
|
||
const { totalPoints, modelName } = formatModelChars2Points({
|
||
model: cqModel.model,
|
||
tokens,
|
||
modelType: ModelTypeEnum.llm
|
||
});
|
||
|
||
return {
|
||
[result.key]: true,
|
||
[ModuleOutputKeyEnum.responseData]: {
|
||
totalPoints: user.openaiAccount?.key ? 0 : totalPoints,
|
||
model: modelName,
|
||
query: userChatInput,
|
||
tokens,
|
||
cqList: agents,
|
||
cqResult: result.value,
|
||
contextTotalLen: chatHistories.length + 2
|
||
},
|
||
[ModuleOutputKeyEnum.moduleDispatchBills]: [
|
||
{
|
||
moduleName: name,
|
||
totalPoints: user.openaiAccount?.key ? 0 : totalPoints,
|
||
model: modelName,
|
||
tokens
|
||
}
|
||
]
|
||
};
|
||
};
|
||
|
||
async function toolChoice({
|
||
user,
|
||
cqModel,
|
||
histories,
|
||
params: { agents, systemPrompt, userChatInput }
|
||
}: Props & { cqModel: LLMModelItemType }) {
|
||
const messages: ChatItemType[] = [
|
||
...histories,
|
||
{
|
||
obj: ChatRoleEnum.Human,
|
||
value: systemPrompt
|
||
? `<背景知识>
|
||
${systemPrompt}
|
||
</背景知识>
|
||
|
||
问题: "${userChatInput}"
|
||
`
|
||
: userChatInput
|
||
}
|
||
];
|
||
|
||
const filterMessages = ChatContextFilter({
|
||
messages,
|
||
maxTokens: cqModel.maxContext
|
||
});
|
||
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
|
||
|
||
// function body
|
||
const agentFunction = {
|
||
name: agentFunName,
|
||
description: '根据对话记录及背景知识,对问题进行分类,并返回对应的类型字段',
|
||
parameters: {
|
||
type: 'object',
|
||
properties: {
|
||
type: {
|
||
type: 'string',
|
||
description: `问题类型。下面是几种可选的问题类型: ${agents
|
||
.map((item) => `${item.value},返回:'${item.key}'`)
|
||
.join(';')}`,
|
||
enum: agents.map((item) => item.key)
|
||
}
|
||
},
|
||
required: ['type']
|
||
}
|
||
};
|
||
const tools: any = [
|
||
{
|
||
type: 'function',
|
||
function: agentFunction
|
||
}
|
||
];
|
||
|
||
const ai = getAIApi({
|
||
userKey: user.openaiAccount,
|
||
timeout: 480000
|
||
});
|
||
|
||
const response = await ai.chat.completions.create({
|
||
model: cqModel.model,
|
||
temperature: 0,
|
||
messages: adaptMessages,
|
||
tools,
|
||
tool_choice: { type: 'function', function: { name: agentFunName } }
|
||
});
|
||
|
||
try {
|
||
const arg = JSON.parse(
|
||
response?.choices?.[0]?.message?.tool_calls?.[0]?.function?.arguments || ''
|
||
);
|
||
|
||
return {
|
||
arg,
|
||
tokens: countMessagesTokens(messages, tools)
|
||
};
|
||
} catch (error) {
|
||
console.log(agentFunction.parameters);
|
||
console.log(response.choices?.[0]?.message);
|
||
|
||
console.log('Your model may not support toll_call', error);
|
||
|
||
return {
|
||
arg: {},
|
||
tokens: 0
|
||
};
|
||
}
|
||
}
|
||
|
||
async function completions({
|
||
cqModel,
|
||
user,
|
||
histories,
|
||
params: { agents, systemPrompt = '', userChatInput }
|
||
}: Props & { cqModel: LLMModelItemType }) {
|
||
const messages: ChatItemType[] = [
|
||
{
|
||
obj: ChatRoleEnum.Human,
|
||
value: replaceVariable(cqModel.customCQPrompt || Prompt_CQJson, {
|
||
systemPrompt: systemPrompt || 'null',
|
||
typeList: agents
|
||
.map((item) => `{"questionType": "${item.value}", "typeId": "${item.key}"}`)
|
||
.join('\n'),
|
||
history: histories.map((item) => `${item.obj}:${item.value}`).join('\n'),
|
||
question: userChatInput
|
||
})
|
||
}
|
||
];
|
||
|
||
const ai = getAIApi({
|
||
userKey: user.openaiAccount,
|
||
timeout: 480000
|
||
});
|
||
|
||
const data = await ai.chat.completions.create({
|
||
model: cqModel.model,
|
||
temperature: 0.01,
|
||
messages: adaptChat2GptMessages({ messages, reserveId: false }),
|
||
stream: false
|
||
});
|
||
const answer = data.choices?.[0].message?.content || '';
|
||
|
||
const id =
|
||
agents.find((item) => answer.includes(item.key) || answer.includes(item.value))?.key || '';
|
||
|
||
return {
|
||
tokens: countMessagesTokens(messages),
|
||
arg: { type: id }
|
||
};
|
||
}
|