Files
FastGPT/packages/service/core/ai/embedding/index.ts
Archer 34602b25df 4.6.8-alpha (#804)
* perf: redirect request and err log replace

perf: dataset openapi

feat: session

fix: retry input error

feat: 468 doc

sub page

feat: standard sub

perf: rerank tip

perf: rerank tip

perf: api sdk

perf: openapi

sub plan

perf: sub ui

fix: ts

* perf: init log

* fix: variable select

* sub page

* icon

* perf: llm model config

* perf: menu ux

* perf: system store

* perf: publish app name

* fix: init data

* perf: flow edit ux

* fix: value type format and ux

* fix prompt editor default value (#13)

* fix prompt editor default value

* fix prompt editor update when not focus

* add key with variable

---------

Co-authored-by: Archer <545436317@qq.com>

* fix: value type

* doc

* i18n

* import path

* home page

* perf: mongo session running

* fix: ts

* perf: use toast

* perf: flow edit

* perf: sse response

* slider ui

* fetch error

* fix prompt editor rerender when not focus by key defaultvalue (#14)

* perf: prompt editor

* feat: dataset search concat

* perf: doc

* fix:ts

* perf: doc

* fix json editor onblur value (#15)

* faq

* vector model default config

* ipv6

---------

Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
2024-02-01 21:57:41 +08:00

66 lines
1.6 KiB
TypeScript

import { VectorModelItemType } from '@fastgpt/global/core/ai/model.d';
import { getAIApi } from '../config';
type GetVectorProps = {
model: VectorModelItemType;
input: string;
};
// text to vector
export async function getVectorsByText({ model, input }: GetVectorProps) {
if (!input) {
return Promise.reject({
code: 500,
message: 'input is empty'
});
}
try {
const ai = getAIApi();
// input text to vector
const result = await ai.embeddings
.create({
...model.defaultConfig,
model: model.model,
input: [input]
})
.then(async (res) => {
if (!res.data) {
return Promise.reject('Embedding API 404');
}
if (!res?.data?.[0]?.embedding) {
console.log(res);
// @ts-ignore
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
}
return {
charsLength: input.length,
vectors: await Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
};
});
return result;
} catch (error) {
console.log(`Embedding Error`, error);
return Promise.reject(error);
}
}
function unityDimensional(vector: number[]) {
if (vector.length > 1536) {
console.log(
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
);
return vector.slice(0, 1536);
}
let resultVector = vector;
const vectorLen = vector.length;
const zeroVector = new Array(1536 - vectorLen).fill(0);
return resultVector.concat(zeroVector);
}