Files
FastGPT/packages/service/core/dataset/search/utils.ts
Theresa 2d3117c5da feat: update ESLint config with @typescript-eslint/consistent-type-imports (#4746)
* update: Add type

* fix: update import statement for NextApiRequest type

* fix: update imports to use type for LexicalEditor and EditorState

* Refactor imports to use 'import type' for type-only imports across multiple files

- Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking.
- Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management.
- Improved code readability and maintainability by distinguishing between value and type imports.

* refactor: remove old ESLint configuration and add new rules

- Deleted the old ESLint configuration file from the app project.
- Added a new ESLint configuration file with updated rules and settings.
- Changed imports to use type-only imports in various files for better clarity and performance.
- Updated TypeScript configuration to remove unnecessary options.
- Added an ESLint ignore file to exclude build and dependency directories from linting.

* fix: update imports to use 'import type' for type-only imports in schema files
2025-05-06 17:33:09 +08:00

89 lines
2.5 KiB
TypeScript

import { type LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
import { queryExtension } from '../../ai/functions/queryExtension';
import { type ChatItemType } from '@fastgpt/global/core/chat/type';
import { hashStr } from '@fastgpt/global/common/string/tools';
import { chatValue2RuntimePrompt } from '@fastgpt/global/core/chat/adapt';
export const datasetSearchQueryExtension = async ({
query,
extensionModel,
extensionBg = '',
histories = []
}: {
query: string;
extensionModel?: LLMModelItemType;
extensionBg?: string;
histories?: ChatItemType[];
}) => {
const filterSamQuery = (queries: string[]) => {
const set = new Set<string>();
const filterSameQueries = queries.filter((item) => {
// 删除所有的标点符号与空格等,只对文本进行比较
const str = hashStr(item.replace(/[^\p{L}\p{N}]/gu, ''));
if (set.has(str)) return false;
set.add(str);
return true;
});
return filterSameQueries;
};
let { queries, rewriteQuery, alreadyExtension } = (() => {
// concat query
let rewriteQuery =
histories.length > 0
? `${histories
.map((item) => {
return `${item.obj}: ${chatValue2RuntimePrompt(item.value).text}`;
})
.join('\n')}
Human: ${query}
`
: query;
/* if query already extension, direct parse */
try {
const jsonParse = JSON.parse(query);
const queries: string[] = Array.isArray(jsonParse) ? filterSamQuery(jsonParse) : [query];
const alreadyExtension = Array.isArray(jsonParse);
return {
queries,
rewriteQuery: alreadyExtension ? queries.join('\n') : rewriteQuery,
alreadyExtension: alreadyExtension
};
} catch (error) {
return {
queries: [query],
rewriteQuery,
alreadyExtension: false
};
}
})();
// ai extension
const aiExtensionResult = await (async () => {
if (!extensionModel || alreadyExtension) return;
const result = await queryExtension({
chatBg: extensionBg,
query,
histories,
model: extensionModel.model
});
if (result.extensionQueries?.length === 0) return;
return result;
})();
const extensionQueries = filterSamQuery(aiExtensionResult?.extensionQueries || []);
if (aiExtensionResult) {
queries = filterSamQuery(queries.concat(extensionQueries));
rewriteQuery = queries.join('\n');
}
return {
extensionQueries,
concatQueries: queries,
rewriteQuery,
aiExtensionResult
};
};