Files
FastGPT/packages/service/core/dataset/data/schema.ts
Theresa 2d3117c5da feat: update ESLint config with @typescript-eslint/consistent-type-imports (#4746)
* update: Add type

* fix: update import statement for NextApiRequest type

* fix: update imports to use type for LexicalEditor and EditorState

* Refactor imports to use 'import type' for type-only imports across multiple files

- Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking.
- Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management.
- Improved code readability and maintainability by distinguishing between value and type imports.

* refactor: remove old ESLint configuration and add new rules

- Deleted the old ESLint configuration file from the app project.
- Added a new ESLint configuration file with updated rules and settings.
- Changed imports to use type-only imports in various files for better clarity and performance.
- Updated TypeScript configuration to remove unnecessary options.
- Added an ESLint ignore file to exclude build and dependency directories from linting.

* fix: update imports to use 'import type' for type-only imports in schema files
2025-05-06 17:33:09 +08:00

118 lines
2.6 KiB
TypeScript

import { connectionMongo, getMongoModel } from '../../../common/mongo';
const { Schema, model, models } = connectionMongo;
import { type DatasetDataSchemaType } from '@fastgpt/global/core/dataset/type.d';
import {
TeamCollectionName,
TeamMemberCollectionName
} from '@fastgpt/global/support/user/team/constant';
import { DatasetCollectionName } from '../schema';
import { DatasetColCollectionName } from '../collection/schema';
import { DatasetDataIndexTypeEnum } from '@fastgpt/global/core/dataset/data/constants';
export const DatasetDataCollectionName = 'dataset_datas';
const DatasetDataSchema = new Schema({
teamId: {
type: Schema.Types.ObjectId,
ref: TeamCollectionName,
required: true
},
tmbId: {
type: Schema.Types.ObjectId,
ref: TeamMemberCollectionName,
required: true
},
datasetId: {
type: Schema.Types.ObjectId,
ref: DatasetCollectionName,
required: true
},
collectionId: {
type: Schema.Types.ObjectId,
ref: DatasetColCollectionName,
required: true
},
q: {
type: String,
required: true
},
a: {
type: String,
default: ''
},
history: {
type: [
{
q: String,
a: String,
updateTime: Date
}
]
},
indexes: {
type: [
{
// Abandon
defaultIndex: {
type: Boolean
},
type: {
type: String,
enum: Object.values(DatasetDataIndexTypeEnum),
default: DatasetDataIndexTypeEnum.custom
},
dataId: {
type: String,
required: true
},
text: {
type: String,
required: true
}
}
],
default: []
},
updateTime: {
type: Date,
default: () => new Date()
},
chunkIndex: {
type: Number,
default: 0
},
rebuilding: Boolean,
// Abandon
fullTextToken: String,
initFullText: Boolean,
initJieba: Boolean
});
try {
// list collection and count data; list data; delete collection(relate data)
DatasetDataSchema.index({
teamId: 1,
datasetId: 1,
collectionId: 1,
chunkIndex: 1,
updateTime: -1
});
// Recall vectors after data matching
DatasetDataSchema.index({ teamId: 1, datasetId: 1, collectionId: 1, 'indexes.dataId': 1 });
DatasetDataSchema.index({ updateTime: 1 });
// rebuild data
DatasetDataSchema.index({ rebuilding: 1, teamId: 1, datasetId: 1 });
// 为查询 initJieba 字段不存在的数据添加索引
DatasetDataSchema.index({ initJieba: 1, updateTime: 1 });
} catch (error) {
console.log(error);
}
export const MongoDatasetData = getMongoModel<DatasetDataSchemaType>(
DatasetDataCollectionName,
DatasetDataSchema
);