mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-22 12:20:34 +00:00

* update: Add type * fix: update import statement for NextApiRequest type * fix: update imports to use type for LexicalEditor and EditorState * Refactor imports to use 'import type' for type-only imports across multiple files - Updated imports in various components and API files to use 'import type' for better clarity and to optimize TypeScript's type checking. - Ensured consistent usage of type imports in files related to chat, dataset, workflow, and user management. - Improved code readability and maintainability by distinguishing between value and type imports. * refactor: remove old ESLint configuration and add new rules - Deleted the old ESLint configuration file from the app project. - Added a new ESLint configuration file with updated rules and settings. - Changed imports to use type-only imports in various files for better clarity and performance. - Updated TypeScript configuration to remove unnecessary options. - Added an ESLint ignore file to exclude build and dependency directories from linting. * fix: update imports to use 'import type' for type-only imports in schema files
239 lines
6.8 KiB
TypeScript
239 lines
6.8 KiB
TypeScript
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||
import { createChatCompletion } from '../config';
|
||
import { type ChatItemType } from '@fastgpt/global/core/chat/type';
|
||
import { countGptMessagesTokens, countPromptTokens } from '../../../common/string/tiktoken/index';
|
||
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
|
||
import { getLLMModel } from '../model';
|
||
import { llmCompletionsBodyFormat, formatLLMResponse } from '../utils';
|
||
import { addLog } from '../../../common/system/log';
|
||
import { filterGPTMessageByMaxContext } from '../../chat/utils';
|
||
import json5 from 'json5';
|
||
|
||
/*
|
||
query extension - 问题扩展
|
||
可以根据上下文,消除指代性问题以及扩展问题,利于检索。
|
||
*/
|
||
|
||
const title = global.feConfigs?.systemTitle || 'FastAI';
|
||
const defaultPrompt = `## 你的任务
|
||
你作为一个向量检索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高向量检索的语义丰富度,提高向量检索的精度。
|
||
生成的问题要求指向对象清晰明确,并与“原问题语言相同”。
|
||
|
||
## 参考示例
|
||
|
||
历史记录:
|
||
"""
|
||
null
|
||
"""
|
||
原问题: 介绍下剧情。
|
||
检索词: ["介绍下故事的背景。","故事的主题是什么?","介绍下故事的主要人物。"]
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: 对话背景。
|
||
assistant: 当前对话是关于 Nginx 的介绍和使用等。
|
||
"""
|
||
原问题: 怎么下载
|
||
检索词: ["Nginx 如何下载?","下载 Nginx 需要什么条件?","有哪些渠道可以下载 Nginx?"]
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: 对话背景。
|
||
assistant: 当前对话是关于 Nginx 的介绍和使用等。
|
||
user: 报错 "no connection"
|
||
assistant: 报错"no connection"可能是因为……
|
||
"""
|
||
原问题: 怎么解决
|
||
检索词: ["Nginx报错"no connection"如何解决?","造成'no connection'报错的原因。","Nginx提示'no connection',要怎么办?"]
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: How long is the maternity leave?
|
||
assistant: The number of days of maternity leave depends on the city in which the employee is located. Please provide your city so that I can answer your questions.
|
||
"""
|
||
原问题: ShenYang
|
||
检索词: ["How many days is maternity leave in Shenyang?","Shenyang's maternity leave policy.","The standard of maternity leave in Shenyang."]
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: 作者是谁?
|
||
assistant: ${title} 的作者是 labring。
|
||
"""
|
||
原问题: Tell me about him
|
||
检索词: ["Introduce labring, the author of ${title}." ," Background information on author labring." "," Why does labring do ${title}?"]
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: 对话背景。
|
||
assistant: 关于 ${title} 的介绍和使用等问题。
|
||
"""
|
||
原问题: 你好。
|
||
检索词: ["你好"]
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: ${title} 如何收费?
|
||
assistant: ${title} 收费可以参考……
|
||
"""
|
||
原问题: 你知道 laf 么?
|
||
检索词: ["laf 的官网地址是多少?","laf 的使用教程。","laf 有什么特点和优势。"]
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: ${title} 的优势
|
||
assistant: 1. 开源
|
||
2. 简便
|
||
3. 扩展性强
|
||
"""
|
||
原问题: 介绍下第2点。
|
||
检索词: ["介绍下 ${title} 简便的优势", "从哪些方面,可以体现出 ${title} 的简便"]。
|
||
----------------
|
||
历史记录:
|
||
"""
|
||
user: 什么是 ${title}?
|
||
assistant: ${title} 是一个 RAG 平台。
|
||
user: 什么是 Laf?
|
||
assistant: Laf 是一个云函数开发平台。
|
||
"""
|
||
原问题: 它们有什么关系?
|
||
检索词: ["${title}和Laf有什么关系?","介绍下${title}","介绍下Laf"]
|
||
|
||
## 输出要求
|
||
|
||
1. 输出格式为 JSON 数组,数组中每个元素为字符串。无需对输出进行任何解释。
|
||
2. 输出语言与原问题相同。原问题为中文则输出中文;原问题为英文则输出英文。
|
||
|
||
## 开始任务
|
||
|
||
历史记录:
|
||
"""
|
||
{{histories}}
|
||
"""
|
||
原问题: {{query}}
|
||
检索词: `;
|
||
|
||
export const queryExtension = async ({
|
||
chatBg,
|
||
query,
|
||
histories = [],
|
||
model
|
||
}: {
|
||
chatBg?: string;
|
||
query: string;
|
||
histories: ChatItemType[];
|
||
model: string;
|
||
}): Promise<{
|
||
rawQuery: string;
|
||
extensionQueries: string[];
|
||
model: string;
|
||
inputTokens: number;
|
||
outputTokens: number;
|
||
}> => {
|
||
const systemFewShot = chatBg
|
||
? `user: 对话背景。
|
||
assistant: ${chatBg}
|
||
`
|
||
: '';
|
||
|
||
const modelData = getLLMModel(model);
|
||
const filterHistories = await filterGPTMessageByMaxContext({
|
||
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
|
||
maxContext: modelData.maxContext - 1000
|
||
});
|
||
|
||
const historyFewShot = filterHistories
|
||
.map((item) => {
|
||
const role = item.role;
|
||
const content = item.content;
|
||
if ((role === 'user' || role === 'assistant') && content) {
|
||
if (typeof content === 'string') {
|
||
return `${role}: ${content}`;
|
||
} else {
|
||
return `${role}: ${content.map((item) => (item.type === 'text' ? item.text : '')).join('\n')}`;
|
||
}
|
||
}
|
||
})
|
||
.filter(Boolean)
|
||
.join('\n');
|
||
const concatFewShot = `${systemFewShot}${historyFewShot}`.trim();
|
||
|
||
const messages = [
|
||
{
|
||
role: 'user',
|
||
content: replaceVariable(defaultPrompt, {
|
||
query: `${query}`,
|
||
histories: concatFewShot || 'null'
|
||
})
|
||
}
|
||
] as any;
|
||
|
||
const { response } = await createChatCompletion({
|
||
body: llmCompletionsBodyFormat(
|
||
{
|
||
stream: true,
|
||
model: modelData.model,
|
||
temperature: 0.1,
|
||
messages
|
||
},
|
||
modelData
|
||
)
|
||
});
|
||
const { text: answer, usage } = await formatLLMResponse(response);
|
||
const inputTokens = usage?.prompt_tokens || (await countGptMessagesTokens(messages));
|
||
const outputTokens = usage?.completion_tokens || (await countPromptTokens(answer));
|
||
|
||
if (!answer) {
|
||
return {
|
||
rawQuery: query,
|
||
extensionQueries: [],
|
||
model,
|
||
inputTokens: inputTokens,
|
||
outputTokens: outputTokens
|
||
};
|
||
}
|
||
|
||
const start = answer.indexOf('[');
|
||
const end = answer.lastIndexOf(']');
|
||
if (start === -1 || end === -1) {
|
||
addLog.warn('Query extension failed, not a valid JSON', {
|
||
answer
|
||
});
|
||
return {
|
||
rawQuery: query,
|
||
extensionQueries: [],
|
||
model,
|
||
inputTokens: inputTokens,
|
||
outputTokens: outputTokens
|
||
};
|
||
}
|
||
|
||
// Intercept the content of [] and retain []
|
||
const jsonStr = answer
|
||
.substring(start, end + 1)
|
||
.replace(/(\\n|\\)/g, '')
|
||
.replace(/ /g, '');
|
||
|
||
try {
|
||
const queries = json5.parse(jsonStr) as string[];
|
||
|
||
return {
|
||
rawQuery: query,
|
||
extensionQueries: (Array.isArray(queries) ? queries : []).slice(0, 5),
|
||
model,
|
||
inputTokens,
|
||
outputTokens
|
||
};
|
||
} catch (error) {
|
||
addLog.warn('Query extension failed, not a valid JSON', {
|
||
answer
|
||
});
|
||
return {
|
||
rawQuery: query,
|
||
extensionQueries: [],
|
||
model,
|
||
inputTokens,
|
||
outputTokens
|
||
};
|
||
}
|
||
};
|