mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 11:43:56 +00:00

* feat: model config required check * feat: dataset text model default setting * perf: collection list count * fix: ts * remove index count
222 lines
7.2 KiB
TypeScript
222 lines
7.2 KiB
TypeScript
import path from 'path';
|
||
import * as fs from 'fs';
|
||
import { SystemModelItemType } from '../type';
|
||
import { ModelTypeEnum } from '@fastgpt/global/core/ai/model';
|
||
import { MongoSystemModel } from './schema';
|
||
import {
|
||
LLMModelItemType,
|
||
EmbeddingModelItemType,
|
||
TTSModelType,
|
||
STTModelType,
|
||
ReRankModelItemType
|
||
} from '@fastgpt/global/core/ai/model.d';
|
||
import { debounce } from 'lodash';
|
||
import {
|
||
getModelProvider,
|
||
ModelProviderIdType,
|
||
ModelProviderType
|
||
} from '@fastgpt/global/core/ai/provider';
|
||
import { findModelFromAlldata } from '../model';
|
||
import {
|
||
reloadFastGPTConfigBuffer,
|
||
updateFastGPTConfigBuffer
|
||
} from '../../../common/system/config/controller';
|
||
import { delay } from '@fastgpt/global/common/system/utils';
|
||
|
||
/*
|
||
TODO: 分优先级读取:
|
||
1. 有外部挂载目录,则读取外部的
|
||
2. 没有外部挂载目录,则读取本地的。然后试图拉取云端的进行覆盖。
|
||
*/
|
||
export const loadSystemModels = async (init = false) => {
|
||
const getProviderList = () => {
|
||
const currentFileUrl = new URL(import.meta.url);
|
||
const filePath = decodeURIComponent(
|
||
process.platform === 'win32'
|
||
? currentFileUrl.pathname.substring(1) // Remove leading slash on Windows
|
||
: currentFileUrl.pathname
|
||
);
|
||
const modelsPath = path.join(path.dirname(filePath), 'provider');
|
||
|
||
return fs.readdirSync(modelsPath) as string[];
|
||
};
|
||
const pushModel = (model: SystemModelItemType) => {
|
||
global.systemModelList.push(model);
|
||
|
||
if (model.isActive) {
|
||
global.systemActiveModelList.push(model);
|
||
|
||
if (model.type === ModelTypeEnum.llm) {
|
||
global.llmModelMap.set(model.model, model);
|
||
global.llmModelMap.set(model.name, model);
|
||
if (model.isDefault) {
|
||
global.systemDefaultModel.llm = model;
|
||
}
|
||
if (model.isDefaultDatasetTextModel) {
|
||
global.systemDefaultModel.datasetTextLLM = model;
|
||
}
|
||
if (model.isDefaultDatasetImageModel) {
|
||
global.systemDefaultModel.datasetImageLLM = model;
|
||
}
|
||
} else if (model.type === ModelTypeEnum.embedding) {
|
||
global.embeddingModelMap.set(model.model, model);
|
||
global.embeddingModelMap.set(model.name, model);
|
||
if (model.isDefault) {
|
||
global.systemDefaultModel.embedding = model;
|
||
}
|
||
} else if (model.type === ModelTypeEnum.tts) {
|
||
global.ttsModelMap.set(model.model, model);
|
||
global.ttsModelMap.set(model.name, model);
|
||
if (model.isDefault) {
|
||
global.systemDefaultModel.tts = model;
|
||
}
|
||
} else if (model.type === ModelTypeEnum.stt) {
|
||
global.sttModelMap.set(model.model, model);
|
||
global.sttModelMap.set(model.name, model);
|
||
if (model.isDefault) {
|
||
global.systemDefaultModel.stt = model;
|
||
}
|
||
} else if (model.type === ModelTypeEnum.rerank) {
|
||
global.reRankModelMap.set(model.model, model);
|
||
global.reRankModelMap.set(model.name, model);
|
||
if (model.isDefault) {
|
||
global.systemDefaultModel.rerank = model;
|
||
}
|
||
}
|
||
}
|
||
};
|
||
|
||
if (!init && global.systemModelList) return;
|
||
|
||
global.systemModelList = [];
|
||
global.systemActiveModelList = [];
|
||
global.llmModelMap = new Map<string, LLMModelItemType>();
|
||
global.embeddingModelMap = new Map<string, EmbeddingModelItemType>();
|
||
global.ttsModelMap = new Map<string, TTSModelType>();
|
||
global.sttModelMap = new Map<string, STTModelType>();
|
||
global.reRankModelMap = new Map<string, ReRankModelItemType>();
|
||
// @ts-ignore
|
||
global.systemDefaultModel = {};
|
||
|
||
try {
|
||
const dbModels = await MongoSystemModel.find({}).lean();
|
||
const providerList = getProviderList();
|
||
|
||
// System model
|
||
await Promise.all(
|
||
providerList.map(async (name) => {
|
||
const fileContent = (await import(`./provider/${name}`))?.default as {
|
||
provider: ModelProviderIdType;
|
||
list: SystemModelItemType[];
|
||
};
|
||
|
||
fileContent.list.forEach((fileModel) => {
|
||
const dbModel = dbModels.find((item) => item.model === fileModel.model);
|
||
|
||
const modelData: any = {
|
||
...fileModel,
|
||
...dbModel?.metadata,
|
||
provider: getModelProvider(dbModel?.metadata?.provider || fileContent.provider).id,
|
||
type: dbModel?.metadata?.type || fileModel.type,
|
||
isCustom: false
|
||
};
|
||
|
||
pushModel(modelData);
|
||
});
|
||
})
|
||
);
|
||
|
||
// Custom model
|
||
dbModels.forEach((dbModel) => {
|
||
if (global.systemModelList.find((item) => item.model === dbModel.model)) return;
|
||
|
||
pushModel({
|
||
...dbModel.metadata,
|
||
isCustom: true
|
||
});
|
||
});
|
||
|
||
// Default model check
|
||
if (!global.systemDefaultModel.llm) {
|
||
global.systemDefaultModel.llm = Array.from(global.llmModelMap.values())[0];
|
||
}
|
||
if (!global.systemDefaultModel.datasetTextLLM) {
|
||
global.systemDefaultModel.datasetTextLLM = Array.from(global.llmModelMap.values()).find(
|
||
(item) => item.datasetProcess
|
||
);
|
||
}
|
||
if (!global.systemDefaultModel.datasetImageLLM) {
|
||
global.systemDefaultModel.datasetImageLLM = Array.from(global.llmModelMap.values()).find(
|
||
(item) => item.vision
|
||
);
|
||
}
|
||
if (!global.systemDefaultModel.embedding) {
|
||
global.systemDefaultModel.embedding = Array.from(global.embeddingModelMap.values())[0];
|
||
}
|
||
if (!global.systemDefaultModel.tts) {
|
||
global.systemDefaultModel.tts = Array.from(global.ttsModelMap.values())[0];
|
||
}
|
||
if (!global.systemDefaultModel.stt) {
|
||
global.systemDefaultModel.stt = Array.from(global.sttModelMap.values())[0];
|
||
}
|
||
if (!global.systemDefaultModel.rerank) {
|
||
global.systemDefaultModel.rerank = Array.from(global.reRankModelMap.values())[0];
|
||
}
|
||
|
||
console.log('Load models success', JSON.stringify(global.systemActiveModelList, null, 2));
|
||
} catch (error) {
|
||
console.error('Load models error', error);
|
||
// @ts-ignore
|
||
global.systemModelList = undefined;
|
||
return Promise.reject(error);
|
||
}
|
||
};
|
||
|
||
export const getSystemModelConfig = async (model: string): Promise<SystemModelItemType> => {
|
||
const modelData = findModelFromAlldata(model);
|
||
if (!modelData) return Promise.reject('Model is not found');
|
||
if (modelData.isCustom) return Promise.reject('Custom model not data');
|
||
|
||
// Read file
|
||
const fileContent = (await import(`./provider/${modelData.provider}`))?.default as {
|
||
provider: ModelProviderType;
|
||
list: SystemModelItemType[];
|
||
};
|
||
|
||
const config = fileContent.list.find((item) => item.model === model);
|
||
|
||
if (!config) return Promise.reject('Model config is not found');
|
||
|
||
return {
|
||
...config,
|
||
provider: modelData.provider,
|
||
isCustom: false
|
||
};
|
||
};
|
||
|
||
export const watchSystemModelUpdate = () => {
|
||
const changeStream = MongoSystemModel.watch();
|
||
|
||
changeStream.on(
|
||
'change',
|
||
debounce(async () => {
|
||
try {
|
||
// Main node will reload twice
|
||
await loadSystemModels(true);
|
||
// All node reaload buffer
|
||
await reloadFastGPTConfigBuffer();
|
||
} catch (error) {}
|
||
}, 500)
|
||
);
|
||
};
|
||
|
||
// 更新完模型后,需要重载缓存
|
||
export const updatedReloadSystemModel = async () => {
|
||
// 1. 更新模型(所有节点都会触发)
|
||
await loadSystemModels(true);
|
||
// 2. 更新缓存(仅主节点触发)
|
||
await updateFastGPTConfigBuffer();
|
||
// 3. 延迟1秒,等待其他节点刷新
|
||
await delay(1000);
|
||
};
|