Files
FastGPT/packages/service/core/ai/utils.ts
Archer 108e1b92ef perf: model provider show; perf: get init data buffer (#3459)
* pr code

* perf: model table show

* perf: model provider show

* perf: get init data buffer

* perf: get init data buffer

* perf: icon
2024-12-24 15:12:07 +08:00

90 lines
2.4 KiB
TypeScript

import { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
import {
ChatCompletionCreateParamsNonStreaming,
ChatCompletionCreateParamsStreaming,
ChatCompletionMessageParam
} from '@fastgpt/global/core/ai/type';
import { countGptMessagesTokens } from '../../common/string/tiktoken';
import { getLLMModel } from './model';
export const computedMaxToken = async ({
maxToken,
model,
filterMessages = []
}: {
maxToken?: number;
model: LLMModelItemType;
filterMessages: ChatCompletionMessageParam[];
}) => {
if (maxToken === undefined) return;
maxToken = Math.min(maxToken, model.maxResponse);
const tokensLimit = model.maxContext;
/* count response max token */
const promptsToken = await countGptMessagesTokens(filterMessages);
maxToken = promptsToken + maxToken > tokensLimit ? tokensLimit - promptsToken : maxToken;
if (maxToken <= 0) {
maxToken = 200;
}
return maxToken;
};
// FastGPT temperature range: [0,10], ai temperature:[0,2],{0,1]……
export const computedTemperature = ({
model,
temperature
}: {
model: LLMModelItemType;
temperature: number;
}) => {
temperature = +(model.maxTemperature * (temperature / 10)).toFixed(2);
temperature = Math.max(temperature, 0.01);
return temperature;
};
type CompletionsBodyType =
| ChatCompletionCreateParamsNonStreaming
| ChatCompletionCreateParamsStreaming;
type InferCompletionsBody<T> = T extends { stream: true }
? ChatCompletionCreateParamsStreaming
: ChatCompletionCreateParamsNonStreaming;
export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
body: T,
model: string | LLMModelItemType
): InferCompletionsBody<T> => {
const modelData = typeof model === 'string' ? getLLMModel(model) : model;
if (!modelData) {
return body as InferCompletionsBody<T>;
}
const requestBody: T = {
...body,
temperature:
typeof body.temperature === 'number'
? computedTemperature({
model: modelData,
temperature: body.temperature
})
: undefined,
...modelData?.defaultConfig
};
// field map
if (modelData.fieldMap) {
Object.entries(modelData.fieldMap).forEach(([sourceKey, targetKey]) => {
// @ts-ignore
requestBody[targetKey] = body[sourceKey];
// @ts-ignore
delete requestBody[sourceKey];
});
}
// console.log(requestBody);
return requestBody as InferCompletionsBody<T>;
};