mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 05:12:39 +00:00

* perf: insert mongo dataset data session * perf: dataset data index * remove delay * rename bill schema * rename bill record * perf: bill table * perf: prompt * perf: sub plan * change the usage count * feat: usage bill * publish usages * doc * 新增团队聊天功能 (#20) * perf: doc * feat 添加标签部分 feat 信息团队标签配置 feat 新增团队同步管理 feat team分享页面 feat 完成team分享页面 feat 实现模糊搜索 style 格式化 fix 修复迷糊匹配 style 样式修改 fix 团队标签功能修复 * fix 修复鉴权功能 * merge 合并代码 * fix 修复引用错误 * fix 修复pr问题 * fix 修复ts格式问题 --------- Co-authored-by: archer <545436317@qq.com> Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com> * update extra plan * fix: ts * format * perf: bill field * feat: standard plan * fix: ts * feat 个人账号页面修改 (#22) * feat 添加标签部分 feat 信息团队标签配置 feat 新增团队同步管理 feat team分享页面 feat 完成team分享页面 feat 实现模糊搜索 style 格式化 fix 修复迷糊匹配 style 样式修改 fix 团队标签功能修复 * fix 修复鉴权功能 * merge 合并代码 * fix 修复引用错误 * fix 修复pr问题 * fix 修复ts格式问题 * feat 修改个人账号页 --------- Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com> * sub plan page (#23) * fix chunk index; error page text * feat: dataset process Integral prediction * feat: stand plan field * feat: sub plan limit * perf: index * query extension * perf: share link push app name * perf: plan point unit * perf: get sub plan * perf: account page * feat 新增套餐详情弹窗代码 (#24) * merge 合并代码 * fix 新增套餐详情弹框 * fix 修复pr问题 * feat: change http node input to prompt editor (#21) * feat: change http node input to prompt editor * fix * split PromptEditor to HttpInput * Team plans (#25) * perf: pay check * perf: team plan test * plan limit check * replace sensitive text * perf: fix some null * collection null check * perf: plans modal * perf: http module * pacakge (#26) * individuation page and pay modal amount (#27) * feat: individuation page * team chat config * pay modal * plan count and replace invalid chars (#29) * fix: user oneapi * fix: training queue * fix: qa queue * perf: remove space chars * replace invalid chars * change httpinput dropdown menu (#28) * perf: http * reseet free plan * perf: plan code to packages * remove llm config to package * perf: code * perf: faq * fix: get team plan --------- Co-authored-by: yst <77910600+yu-and-liu@users.noreply.github.com> Co-authored-by: liuxingwan <liuxingwan.lxw@alibaba-inc.com> Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
67 lines
1.7 KiB
TypeScript
67 lines
1.7 KiB
TypeScript
import { VectorModelItemType } from '@fastgpt/global/core/ai/model.d';
|
|
import { getAIApi } from '../config';
|
|
import { replaceValidChars } from '../../chat/utils';
|
|
|
|
type GetVectorProps = {
|
|
model: VectorModelItemType;
|
|
input: string;
|
|
};
|
|
|
|
// text to vector
|
|
export async function getVectorsByText({ model, input }: GetVectorProps) {
|
|
if (!input) {
|
|
return Promise.reject({
|
|
code: 500,
|
|
message: 'input is empty'
|
|
});
|
|
}
|
|
|
|
try {
|
|
const ai = getAIApi();
|
|
|
|
// input text to vector
|
|
const result = await ai.embeddings
|
|
.create({
|
|
...model.defaultConfig,
|
|
model: model.model,
|
|
input: [input]
|
|
})
|
|
.then(async (res) => {
|
|
if (!res.data) {
|
|
return Promise.reject('Embedding API 404');
|
|
}
|
|
if (!res?.data?.[0]?.embedding) {
|
|
console.log(res);
|
|
// @ts-ignore
|
|
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
|
|
}
|
|
|
|
return {
|
|
charsLength: replaceValidChars(input).length,
|
|
vectors: await Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
|
|
};
|
|
});
|
|
|
|
return result;
|
|
} catch (error) {
|
|
console.log(`Embedding Error`, error);
|
|
|
|
return Promise.reject(error);
|
|
}
|
|
}
|
|
|
|
function unityDimensional(vector: number[]) {
|
|
if (vector.length > 1536) {
|
|
console.log(
|
|
`The current vector dimension is ${vector.length}, and the vector dimension cannot exceed 1536. The first 1536 dimensions are automatically captured`
|
|
);
|
|
return vector.slice(0, 1536);
|
|
}
|
|
let resultVector = vector;
|
|
const vectorLen = vector.length;
|
|
|
|
const zeroVector = new Array(1536 - vectorLen).fill(0);
|
|
|
|
return resultVector.concat(zeroVector);
|
|
}
|