mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00
103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
#!/usr/bin/env python
|
||
# -*- coding: utf-8 -*-
|
||
"""
|
||
@Time: 2023/11/7 22:45
|
||
@Author: zhidong
|
||
@File: reranker.py
|
||
@Desc:
|
||
"""
|
||
import os
|
||
import numpy as np
|
||
import logging
|
||
import uvicorn
|
||
import datetime
|
||
from fastapi import FastAPI, Security, HTTPException
|
||
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
||
from FlagEmbedding import FlagReranker
|
||
from pydantic import Field, BaseModel, validator
|
||
from typing import Optional, List
|
||
|
||
def response(code, msg, data=None):
|
||
time = str(datetime.datetime.now())
|
||
if data is None:
|
||
data = []
|
||
result = {
|
||
"code": code,
|
||
"message": msg,
|
||
"data": data,
|
||
"time": time
|
||
}
|
||
return result
|
||
|
||
def success(data=None, msg=''):
|
||
return
|
||
|
||
class QADocs(BaseModel):
|
||
query: Optional[str]
|
||
documents: Optional[List[str]]
|
||
|
||
|
||
class Singleton(type):
|
||
def __call__(cls, *args, **kwargs):
|
||
if not hasattr(cls, '_instance'):
|
||
cls._instance = super().__call__(*args, **kwargs)
|
||
return cls._instance
|
||
|
||
|
||
RERANK_MODEL_PATH = os.path.join(os.path.dirname(__file__), "bge-reranker-base")
|
||
|
||
class Reranker(metaclass=Singleton):
|
||
def __init__(self, model_path):
|
||
self.reranker = FlagReranker(model_path,
|
||
use_fp16=False)
|
||
|
||
def compute_score(self, pairs: List[List[str]]):
|
||
if len(pairs) > 0:
|
||
result = self.reranker.compute_score(pairs)
|
||
if isinstance(result, float):
|
||
result = [result]
|
||
return result
|
||
else:
|
||
return None
|
||
|
||
|
||
class Chat(object):
|
||
def __init__(self, rerank_model_path: str = RERANK_MODEL_PATH):
|
||
self.reranker = Reranker(rerank_model_path)
|
||
|
||
def fit_query_answer_rerank(self, query_docs: QADocs) -> List:
|
||
if query_docs is None or len(query_docs.documents) == 0:
|
||
return []
|
||
new_docs = []
|
||
pair = []
|
||
for answer in query_docs.documents:
|
||
pair.append([query_docs.query, answer])
|
||
scores = self.reranker.compute_score(pair)
|
||
for index, score in enumerate(scores):
|
||
new_docs.append({"index": index, "text": query_docs.documents[index], "score": 1 / (1 + np.exp(-score))})
|
||
#results = [{"document": {"text": documents["text"]}, "index": documents["index"], "relevance_score": documents["score"]} for documents in list(sorted(new_docs, key=lambda x: x["score"], reverse=True))]
|
||
results = [{"index": documents["index"], "relevance_score": documents["score"]} for documents in list(sorted(new_docs, key=lambda x: x["score"], reverse=True))]
|
||
return {"results": results}
|
||
|
||
app = FastAPI()
|
||
security = HTTPBearer()
|
||
env_bearer_token = 'ACCESS_TOKEN'
|
||
|
||
@app.post('/v1/rerank')
|
||
async def handle_post_request(docs: QADocs, credentials: HTTPAuthorizationCredentials = Security(security)):
|
||
token = credentials.credentials
|
||
if env_bearer_token is not None and token != env_bearer_token:
|
||
raise HTTPException(status_code=401, detail="Invalid token")
|
||
chat = Chat()
|
||
qa_docs_with_rerank = chat.fit_query_answer_rerank(docs)
|
||
return response(200, msg="重排成功", data=qa_docs_with_rerank)
|
||
|
||
if __name__ == "__main__":
|
||
token = os.getenv("ACCESS_TOKEN")
|
||
if token is not None:
|
||
env_bearer_token = token
|
||
try:
|
||
uvicorn.run(app, host='0.0.0.0', port=6006)
|
||
except Exception as e:
|
||
print(f"API启动失败!\n报错:\n{e}")
|