import { BucketNameEnum } from '@fastgpt/global/common/file/constants'; import { ChunkTriggerConfigTypeEnum, DatasetSourceReadTypeEnum } from '@fastgpt/global/core/dataset/constants'; import { readFileContentFromMongo } from '../../common/file/gridfs/controller'; import { urlsFetch } from '../../common/string/cheerio'; import { type TextSplitProps } from '@fastgpt/global/common/string/textSplitter'; import axios from 'axios'; import { readRawContentByFileBuffer } from '../../common/file/read/utils'; import { parseFileExtensionFromUrl } from '@fastgpt/global/common/string/tools'; import { getApiDatasetRequest } from './apiDataset'; import Papa from 'papaparse'; import type { ApiDatasetServerType } from '@fastgpt/global/core/dataset/apiDataset/type'; import { text2Chunks } from '../../worker/function'; export const readFileRawTextByUrl = async ({ teamId, tmbId, url, customPdfParse, getFormatText, relatedId }: { teamId: string; tmbId: string; url: string; customPdfParse?: boolean; getFormatText?: boolean; relatedId: string; // externalFileId / apiFileId }) => { const response = await axios({ method: 'get', url: url, responseType: 'arraybuffer' }); const extension = parseFileExtensionFromUrl(url); const buffer = Buffer.from(response.data, 'binary'); const { rawText } = await readRawContentByFileBuffer({ customPdfParse, getFormatText, extension, teamId, tmbId, buffer, encoding: 'utf-8', metadata: { relatedId } }); return rawText; }; /* fileId - local file, read from mongo link - request externalFile/apiFile = request read */ export const readDatasetSourceRawText = async ({ teamId, tmbId, type, sourceId, selector, externalFileId, apiDatasetServer, customPdfParse, getFormatText }: { teamId: string; tmbId: string; type: DatasetSourceReadTypeEnum; sourceId: string; customPdfParse?: boolean; getFormatText?: boolean; selector?: string; // link selector externalFileId?: string; // external file dataset apiDatasetServer?: ApiDatasetServerType; // api dataset }): Promise<{ title?: string; rawText: string; }> => { if (type === DatasetSourceReadTypeEnum.fileLocal) { const { filename, rawText } = await readFileContentFromMongo({ teamId, tmbId, bucketName: BucketNameEnum.dataset, fileId: sourceId, customPdfParse, getFormatText }); return { title: filename, rawText }; } else if (type === DatasetSourceReadTypeEnum.link) { const result = await urlsFetch({ urlList: [sourceId], selector }); const { title = sourceId, content = '' } = result[0]; if (!content || content === 'Cannot fetch internal url') { return Promise.reject(content || 'Can not fetch content from link'); } return { title, rawText: content }; } else if (type === DatasetSourceReadTypeEnum.externalFile) { if (!externalFileId) return Promise.reject('FileId not found'); const rawText = await readFileRawTextByUrl({ teamId, tmbId, url: sourceId, relatedId: externalFileId, customPdfParse }); return { rawText }; } else if (type === DatasetSourceReadTypeEnum.apiFile) { const { title, rawText } = await readApiServerFileContent({ apiDatasetServer, apiFileId: sourceId, teamId, tmbId }); return { title, rawText }; } return { title: '', rawText: '' }; }; export const readApiServerFileContent = async ({ apiDatasetServer, apiFileId, teamId, tmbId, customPdfParse }: { apiDatasetServer?: ApiDatasetServerType; apiFileId: string; teamId: string; tmbId: string; customPdfParse?: boolean; }): Promise<{ title?: string; rawText: string; }> => { return (await getApiDatasetRequest(apiDatasetServer)).getFileContent({ teamId, tmbId, apiFileId, customPdfParse }); }; export const rawText2Chunks = async ({ rawText = '', chunkTriggerType = ChunkTriggerConfigTypeEnum.minSize, chunkTriggerMinSize = 1000, backupParse, chunkSize = 512, imageIdList, ...splitProps }: { rawText: string; imageIdList?: string[]; chunkTriggerType?: ChunkTriggerConfigTypeEnum; chunkTriggerMinSize?: number; // maxSize from agent model, not store backupParse?: boolean; tableParse?: boolean; } & TextSplitProps): Promise< { q: string; a: string; indexes?: string[]; imageIdList?: string[]; }[] > => { const parseDatasetBackup2Chunks = (rawText: string) => { const csvArr = Papa.parse(rawText).data as string[][]; const chunks = csvArr .slice(1) .map((item) => ({ q: item[0] || '', a: item[1] || '', indexes: item.slice(2).filter((item) => item.trim()), imageIdList })) .filter((item) => item.q || item.a); return { chunks }; }; if (backupParse) { return parseDatasetBackup2Chunks(rawText).chunks; } // Chunk condition // 1. 选择最大值条件,只有超过了最大值(默认为模型的最大值*0.7),才会触发分块 if (chunkTriggerType === ChunkTriggerConfigTypeEnum.maxSize) { const textLength = rawText.trim().length; const maxSize = splitProps.maxSize ? splitProps.maxSize * 0.7 : 16000; if (textLength < maxSize) { return [ { q: rawText, a: '', imageIdList } ]; } } // 2. 选择最小值条件,只有超过最小值(手动决定)才会触发分块 if (chunkTriggerType !== ChunkTriggerConfigTypeEnum.forceChunk) { const textLength = rawText.trim().length; if (textLength < chunkTriggerMinSize) { return [{ q: rawText, a: '', imageIdList }]; } } const { chunks } = await text2Chunks({ text: rawText, chunkSize, ...splitProps }); return chunks.map((item) => ({ q: item, a: '', indexes: [], imageIdList })); };