fastgpt logo # FastGPT FastGPT is a knowledge-based question answering system built on the LLM. It offers out-of-the-box data processing and model invocation capabilities. Moreover, it allows for workflow orchestration through Flow visualization, thereby enabling complex question and answer scenarios!

Online ยท Document ยท Development ยท Deploy ยท Power By

## ๐Ÿ›ธ Online [fastgpt.run](https://fastgpt.run/) | | | | ---------------------------------- | ---------------------------------- | | ![Demo](./.github/imgs/intro1.png) | ![Demo](./.github/imgs/intro2.png) | | ![Demo](./.github/imgs/intro3.png) | ![Demo](./.github/imgs/intro4.png) | ## ๐Ÿ’ก Features 1. Powerful visual orchestration for easy AI application building - [x] Provides a simple mode without the need for orchestration operations - [x] User dialogue pre-guidance - [x] Global variables - [x] Knowledge base search - [x] Multi-LLM model dialogue - [x] Extraction of text content into structured data - [x] HTTP extension - [ ] Sandbox JS runtime module - [ ] Continuous dialogue guidance - [ ] Dialogue multi-path selection - [ ] Source file reference tracking 2. Rich knowledge base preprocessing - [x] Multiple library reuse and mixing - [x] Chunk record modification and deletion - [x] Supports direct segment import - [x] Supports QA split import - [x] Supports manual input content - [ ] Supports URL import reading - [x] Supports batch import of Q&A pairs in CSV format - [ ] Supports separate vector model settings for knowledge bases - [ ] Source file storage 3. Multiple effect testing channels - [x] Knowledge base single point search testing - [x] Feedback references and ability to modify and delete during dialogue - [x] Complete context presentation - [ ] Complete module intermediate value presentation 4. OpenAPI - [x] completions interface (aligned with GPT interface) - [ ] Knowledge base CRUD 5. Operational functions - [x] Login-free sharing window - [x] One-click embedding with Iframe - [ ] Unified access to dialogue records ## ๐Ÿ‘จโ€๐Ÿ’ป Development Project tech stack: NextJs + TS + ChakraUI + Mongo + Postgres (Vector plugin) - [Getting Started with Local Development](https://doc.fastgpt.run/docs/development) - [Deploying FastGPT](https://doc.fastgpt.run/docs/installation) - [System Configuration File Explanation](https://doc.fastgpt.run/docs/installation/reference) - [Multi-model Configuration](https://doc.fastgpt.run/docs/installation/reference/models) - [V3 Upgrade V4 Initialization](https://doc.fastgpt.run/docs/installation/upgrading) ## ๐Ÿ‘€ Others - [FastGPT FAQ](https://kjqvjse66l.feishu.cn/docx/HtrgdT0pkonP4kxGx8qcu6XDnGh) - [Docker Deployment Tutorial Video](https://www.bilibili.com/video/BV1jo4y147fT/) - [Official Account Integration Video Tutorial](https://www.bilibili.com/video/BV1xh4y1t7fy/) - [FastGPT Knowledge Base Demo](https://www.bilibili.com/video/BV1Wo4y1p7i1/) ## ๐Ÿ’ช Related Projects - [Laf: 3-minute quick access to third-party applications](https://github.com/labring/laf) - [Sealos: Rapid deployment of cluster applications](https://github.com/labring/sealos) - [One API: Multi-model management, supports Azure, Wenxin Yiyuan, etc.](https://github.com/songquanpeng/one-api) - [TuShan: Build a backend management system in 5 minutes](https://github.com/msgbyte/tushan) ## ๐Ÿค Third-party Ecosystem - [luolinAI: Enterprise WeChat bot, ready to use](https://github.com/luolin-ai/FastGPT-Enterprise-WeChatbot) ## ๐ŸŒŸ Star History [![Star History Chart](https://api.star-history.com/svg?repos=labring/FastGPT&type=Date)](https://star-history.com/#labring/FastGPT&Date)