perf: dataset import params code (#4875)

* perf: dataset import params code

* perf: api dataset code

* model
This commit is contained in:
Archer
2025-05-23 10:40:25 +08:00
committed by GitHub
parent 9af92d1eae
commit fae76e887a
23 changed files with 366 additions and 295 deletions

View File

@@ -21,9 +21,13 @@ import CollectionChunkForm, {
collectionChunkForm2StoreChunkData,
type CollectionChunkFormType
} from '../Form/CollectionChunkForm';
import { getLLMDefaultChunkSize } from '@fastgpt/global/core/dataset/training/utils';
import {
getAutoIndexSize,
getLLMDefaultChunkSize
} from '@fastgpt/global/core/dataset/training/utils';
import { type ChunkSettingsType } from '@fastgpt/global/core/dataset/type';
import PopoverConfirm from '@fastgpt/web/components/common/MyPopover/PopoverConfirm';
import { defaultFormData } from '../Import/Context';
export type WebsiteConfigFormType = {
websiteConfig: {
@@ -76,17 +80,35 @@ const WebsiteConfigModal = ({
const form = useForm<CollectionChunkFormType>({
defaultValues: {
trainingType: chunkSettings?.trainingType || DatasetCollectionDataProcessModeEnum.chunk,
imageIndex: chunkSettings?.imageIndex || false,
autoIndexes: chunkSettings?.autoIndexes || false,
trainingType: chunkSettings?.trainingType,
chunkSettingMode: chunkSettings?.chunkSettingMode || ChunkSettingModeEnum.auto,
chunkSplitMode: chunkSettings?.chunkSplitMode || DataChunkSplitModeEnum.size,
embeddingChunkSize: chunkSettings?.chunkSize || 2000,
qaChunkSize: chunkSettings?.chunkSize || getLLMDefaultChunkSize(datasetDetail.agentModel),
indexSize: chunkSettings?.indexSize || datasetDetail.vectorModel?.defaultToken || 512,
chunkTriggerType: chunkSettings?.chunkTriggerType || defaultFormData.chunkTriggerType,
chunkTriggerMinSize:
chunkSettings?.chunkTriggerMinSize || defaultFormData.chunkTriggerMinSize,
dataEnhanceCollectionName:
chunkSettings?.dataEnhanceCollectionName || defaultFormData.dataEnhanceCollectionName,
imageIndex: chunkSettings?.imageIndex || defaultFormData.imageIndex,
autoIndexes: chunkSettings?.autoIndexes || defaultFormData.autoIndexes,
chunkSettingMode: chunkSettings?.chunkSettingMode || defaultFormData.chunkSettingMode,
chunkSplitMode: chunkSettings?.chunkSplitMode || defaultFormData.chunkSplitMode,
paragraphChunkAIMode:
chunkSettings?.paragraphChunkAIMode || defaultFormData.paragraphChunkAIMode,
paragraphChunkDeep: chunkSettings?.paragraphChunkDeep || defaultFormData.paragraphChunkDeep,
paragraphChunkMinSize:
chunkSettings?.paragraphChunkMinSize || defaultFormData.paragraphChunkMinSize,
paragraphChunkMaxSize:
chunkSettings?.paragraphChunkMaxSize || defaultFormData.paragraphChunkMaxSize,
chunkSize: chunkSettings?.chunkSize || defaultFormData.chunkSize,
chunkSplitter: chunkSettings?.chunkSplitter || defaultFormData.chunkSplitter,
indexSize: chunkSettings?.indexSize || defaultFormData.indexSize,
chunkSplitter: chunkSettings?.chunkSplitter || '',
qaPrompt: chunkSettings?.qaPrompt || Prompt_AgentQA.description
}
});

View File

@@ -17,6 +17,10 @@ import {
} from '@chakra-ui/react';
import MyIcon from '@fastgpt/web/components/common/Icon';
import LeftRadio from '@fastgpt/web/components/common/Radio/LeftRadio';
import type {
ChunkTriggerConfigTypeEnum,
ParagraphChunkAIModeEnum
} from '@fastgpt/global/core/dataset/constants';
import {
DataChunkSplitModeEnum,
DatasetCollectionDataProcessModeEnum,
@@ -42,7 +46,6 @@ import {
minChunkSize
} from '@fastgpt/global/core/dataset/training/utils';
import RadioGroup from '@fastgpt/web/components/common/Radio/RadioGroup';
import { type ChunkSettingsType } from '@fastgpt/global/core/dataset/type';
import type { LLMModelItemType, EmbeddingModelItemType } from '@fastgpt/global/core/ai/model.d';
const PromptTextarea = ({
@@ -86,19 +89,35 @@ const PromptTextarea = ({
export type CollectionChunkFormType = {
trainingType: DatasetCollectionDataProcessModeEnum;
// Chunk trigger
chunkTriggerType: ChunkTriggerConfigTypeEnum;
chunkTriggerMinSize: number; // maxSize from agent model, not store
// Data enhance
dataEnhanceCollectionName: boolean; // Auto add collection name to data
// Index enhance
imageIndex: boolean;
autoIndexes: boolean;
chunkSettingMode: ChunkSettingModeEnum;
// Chunk setting
chunkSettingMode: ChunkSettingModeEnum; // 系统参数/自定义参数
chunkSplitMode: DataChunkSplitModeEnum;
embeddingChunkSize: number;
qaChunkSize: number;
chunkSplitter?: string;
// Paragraph split
paragraphChunkAIMode: ParagraphChunkAIModeEnum;
paragraphChunkDeep: number; // Paragraph deep
paragraphChunkMinSize: number; // Paragraph min size, if too small, it will merge
paragraphChunkMaxSize: number; // Paragraph max size, if too large, it will split
// Size split
chunkSize: number;
// Char split
chunkSplitter: string;
indexSize: number;
qaPrompt?: string;
};
const CollectionChunkForm = ({ form }: { form: UseFormReturn<CollectionChunkFormType> }) => {
const { t } = useTranslation();
const { feConfigs } = useSystemStore();
@@ -131,29 +150,26 @@ const CollectionChunkForm = ({ form }: { form: UseFormReturn<CollectionChunkForm
tooltip: t(value.tooltip as any)
}));
}, [t]);
const {
chunkSizeField,
maxChunkSize,
minChunkSize: minChunkSizeValue,
maxIndexSize
} = useMemo(() => {
if (trainingType === DatasetCollectionDataProcessModeEnum.qa) {
return {
chunkSizeField: 'qaChunkSize',
maxChunkSize: getLLMMaxChunkSize(agentModel),
minChunkSize: 1000,
maxIndexSize: 1000
};
} else if (autoIndexes) {
return {
chunkSizeField: 'embeddingChunkSize',
maxChunkSize: getMaxChunkSize(agentModel),
minChunkSize: minChunkSize,
maxIndexSize: getMaxIndexSize(vectorModel)
};
} else {
return {
chunkSizeField: 'embeddingChunkSize',
maxChunkSize: getMaxChunkSize(agentModel),
minChunkSize: minChunkSize,
maxIndexSize: getMaxIndexSize(vectorModel)
@@ -216,6 +232,11 @@ const CollectionChunkForm = ({ form }: { form: UseFormReturn<CollectionChunkForm
value={trainingType}
onChange={(e) => {
setValue('trainingType', e);
if (e === DatasetCollectionDataProcessModeEnum.qa) {
setValue('chunkSize', getLLMDefaultChunkSize(agentModel));
} else {
setValue('chunkSize', chunkAutoChunkSize);
}
}}
defaultBg="white"
activeBg="white"
@@ -317,7 +338,7 @@ const CollectionChunkForm = ({ form }: { form: UseFormReturn<CollectionChunkForm
>
<MyNumberInput
register={register}
name={chunkSizeField}
name={'chunkSize'}
min={minChunkSizeValue}
max={maxChunkSize}
size={'sm'}
@@ -456,24 +477,26 @@ const CollectionChunkForm = ({ form }: { form: UseFormReturn<CollectionChunkForm
export default CollectionChunkForm;
// Get chunk settings from form
export const collectionChunkForm2StoreChunkData = ({
trainingType,
imageIndex,
autoIndexes,
chunkSettingMode,
chunkSplitMode,
embeddingChunkSize,
qaChunkSize,
chunkSplitter,
indexSize,
qaPrompt,
agentModel,
vectorModel
vectorModel,
...data
}: CollectionChunkFormType & {
agentModel: LLMModelItemType;
vectorModel: EmbeddingModelItemType;
}): ChunkSettingsType => {
}): CollectionChunkFormType => {
const {
trainingType,
autoIndexes,
chunkSettingMode,
chunkSize,
chunkSplitter,
indexSize,
qaPrompt
} = data;
// 根据处理方式,获取 auto 和 custom 的参数。
const trainingModeSize: {
autoChunkSize: number;
autoIndexSize: number;
@@ -483,53 +506,53 @@ export const collectionChunkForm2StoreChunkData = ({
if (trainingType === DatasetCollectionDataProcessModeEnum.qa) {
return {
autoChunkSize: getLLMDefaultChunkSize(agentModel),
autoIndexSize: 512,
chunkSize: qaChunkSize,
indexSize: 512
autoIndexSize: getMaxIndexSize(vectorModel),
chunkSize,
indexSize: getMaxIndexSize(vectorModel)
};
} else if (autoIndexes) {
return {
autoChunkSize: chunkAutoChunkSize,
autoIndexSize: getAutoIndexSize(vectorModel),
chunkSize: embeddingChunkSize,
chunkSize,
indexSize
};
} else {
return {
autoChunkSize: chunkAutoChunkSize,
autoIndexSize: getAutoIndexSize(vectorModel),
chunkSize: embeddingChunkSize,
chunkSize,
indexSize
};
}
})();
const { chunkSize: formatChunkIndex, indexSize: formatIndexSize } = (() => {
// 获取真实参数
const {
chunkSize: formatChunkIndex,
indexSize: formatIndexSize,
chunkSplitter: formatChunkSplitter
} = (() => {
if (chunkSettingMode === ChunkSettingModeEnum.auto) {
return {
chunkSize: trainingModeSize.autoChunkSize,
indexSize: trainingModeSize.autoIndexSize
indexSize: trainingModeSize.autoIndexSize,
chunkSplitter: ''
};
} else {
return {
chunkSize: trainingModeSize.chunkSize,
indexSize: trainingModeSize.indexSize
indexSize: trainingModeSize.indexSize,
chunkSplitter
};
}
})();
return {
trainingType,
imageIndex,
autoIndexes,
chunkSettingMode,
chunkSplitMode,
...data,
chunkSize: formatChunkIndex,
indexSize: formatIndexSize,
chunkSplitter,
chunkSplitter: formatChunkSplitter,
qaPrompt: trainingType === DatasetCollectionDataProcessModeEnum.qa ? qaPrompt : undefined
};
};

View File

@@ -3,8 +3,10 @@ import { type SetStateAction, useMemo, useState } from 'react';
import { useTranslation } from 'next-i18next';
import { createContext, useContextSelector } from 'use-context-selector';
import {
ChunkTriggerConfigTypeEnum,
DatasetCollectionDataProcessModeEnum,
ImportDataSourceEnum
ImportDataSourceEnum,
ParagraphChunkAIModeEnum
} from '@fastgpt/global/core/dataset/constants';
import { useMyStep } from '@fastgpt/web/hooks/useStep';
import { Box, Button, Flex, IconButton } from '@chakra-ui/react';
@@ -16,38 +18,14 @@ import { type ImportSourceItemType } from '@/web/core/dataset/type';
import { Prompt_AgentQA } from '@fastgpt/global/core/ai/prompt/agent';
import { DatasetPageContext } from '@/web/core/dataset/context/datasetPageContext';
import { DataChunkSplitModeEnum } from '@fastgpt/global/core/dataset/constants';
import {
getMaxChunkSize,
getLLMDefaultChunkSize,
getLLMMaxChunkSize,
chunkAutoChunkSize,
minChunkSize,
getAutoIndexSize,
getMaxIndexSize
} from '@fastgpt/global/core/dataset/training/utils';
import { chunkAutoChunkSize, getAutoIndexSize } from '@fastgpt/global/core/dataset/training/utils';
import { type CollectionChunkFormType } from '../Form/CollectionChunkForm';
type ChunkSizeFieldType = 'embeddingChunkSize' | 'qaChunkSize';
export type ImportFormType = {
customPdfParse: boolean;
webSelector: string;
} & CollectionChunkFormType;
type TrainingFiledType = {
chunkOverlapRatio: number;
maxChunkSize: number;
minChunkSize: number;
autoChunkSize: number;
chunkSize: number;
maxIndexSize?: number;
indexSize?: number;
autoIndexSize?: number;
charsPointsPrice: number;
priceTip: string;
uploadRate: number;
chunkSizeField: ChunkSizeFieldType;
};
type DatasetImportContextType = {
importSource: ImportDataSourceEnum;
parentId: string | undefined;
@@ -57,7 +35,35 @@ type DatasetImportContextType = {
processParamsForm: UseFormReturn<ImportFormType, any>;
sources: ImportSourceItemType[];
setSources: React.Dispatch<React.SetStateAction<ImportSourceItemType[]>>;
} & TrainingFiledType;
};
export const defaultFormData: ImportFormType = {
customPdfParse: false,
trainingType: DatasetCollectionDataProcessModeEnum.chunk,
chunkTriggerType: ChunkTriggerConfigTypeEnum.minSize,
chunkTriggerMinSize: chunkAutoChunkSize,
dataEnhanceCollectionName: false,
imageIndex: false,
autoIndexes: false,
chunkSettingMode: ChunkSettingModeEnum.auto,
chunkSplitMode: DataChunkSplitModeEnum.size,
paragraphChunkAIMode: ParagraphChunkAIModeEnum.auto,
paragraphChunkDeep: 4,
paragraphChunkMinSize: 100,
paragraphChunkMaxSize: chunkAutoChunkSize,
chunkSize: chunkAutoChunkSize,
chunkSplitter: '',
indexSize: getAutoIndexSize(),
qaPrompt: Prompt_AgentQA.description,
webSelector: ''
};
export const DatasetImportContext = createContext<DatasetImportContextType>({
importSource: ImportDataSourceEnum.fileLocal,
@@ -75,12 +81,9 @@ export const DatasetImportContext = createContext<DatasetImportContextType>({
},
chunkSize: 0,
chunkOverlapRatio: 0,
uploadRate: 0,
//@ts-ignore
processParamsForm: undefined,
autoChunkSize: 0,
charsPointsPrice: 0,
priceTip: ''
autoChunkSize: 0
});
const DatasetImportContextProvider = ({ children }: { children: React.ReactNode }) => {
@@ -180,119 +183,17 @@ const DatasetImportContextProvider = ({ children }: { children: React.ReactNode
});
const vectorModel = datasetDetail.vectorModel;
const agentModel = datasetDetail.agentModel;
const processParamsForm = useForm<ImportFormType>({
defaultValues: {
imageIndex: false,
autoIndexes: false,
trainingType: DatasetCollectionDataProcessModeEnum.chunk,
chunkSettingMode: ChunkSettingModeEnum.auto,
chunkSplitMode: DataChunkSplitModeEnum.size,
embeddingChunkSize: chunkAutoChunkSize,
indexSize: vectorModel?.defaultToken || 512,
qaChunkSize: getLLMDefaultChunkSize(agentModel),
chunkSplitter: '',
qaPrompt: Prompt_AgentQA.description,
webSelector: '',
customPdfParse: false
...defaultFormData,
indexSize: getAutoIndexSize(vectorModel)
}
});
const [sources, setSources] = useState<ImportSourceItemType[]>([]);
// watch form
const trainingType = processParamsForm.watch('trainingType');
const chunkSettingMode = processParamsForm.watch('chunkSettingMode');
const embeddingChunkSize = processParamsForm.watch('embeddingChunkSize');
const qaChunkSize = processParamsForm.watch('qaChunkSize');
const chunkSplitter = processParamsForm.watch('chunkSplitter');
const autoIndexes = processParamsForm.watch('autoIndexes');
const indexSize = processParamsForm.watch('indexSize');
const TrainingModeMap = useMemo<TrainingFiledType>(() => {
if (trainingType === DatasetCollectionDataProcessModeEnum.qa) {
return {
chunkSizeField: 'qaChunkSize',
chunkOverlapRatio: 0,
maxChunkSize: getLLMMaxChunkSize(agentModel),
minChunkSize: 1000,
autoChunkSize: getLLMDefaultChunkSize(agentModel),
chunkSize: qaChunkSize,
charsPointsPrice: agentModel.charsPointsPrice || 0,
priceTip: t('dataset:import.Auto mode Estimated Price Tips', {
price: agentModel.charsPointsPrice
}),
uploadRate: 30
};
} else if (autoIndexes) {
return {
chunkSizeField: 'embeddingChunkSize',
chunkOverlapRatio: 0.2,
maxChunkSize: getMaxChunkSize(agentModel),
minChunkSize: minChunkSize,
autoChunkSize: chunkAutoChunkSize,
chunkSize: embeddingChunkSize,
maxIndexSize: getMaxIndexSize(vectorModel),
autoIndexSize: getAutoIndexSize(vectorModel),
indexSize,
charsPointsPrice: agentModel.charsPointsPrice || 0,
priceTip: t('dataset:import.Auto mode Estimated Price Tips', {
price: agentModel.charsPointsPrice
}),
uploadRate: 100
};
} else {
return {
chunkSizeField: 'embeddingChunkSize',
chunkOverlapRatio: 0.2,
maxChunkSize: getMaxChunkSize(agentModel),
minChunkSize: minChunkSize,
autoChunkSize: chunkAutoChunkSize,
chunkSize: embeddingChunkSize,
maxIndexSize: getMaxIndexSize(vectorModel),
autoIndexSize: getAutoIndexSize(vectorModel),
indexSize,
charsPointsPrice: vectorModel.charsPointsPrice || 0,
priceTip: t('dataset:import.Embedding Estimated Price Tips', {
price: vectorModel.charsPointsPrice
}),
uploadRate: 150
};
}
}, [
trainingType,
autoIndexes,
agentModel,
qaChunkSize,
t,
embeddingChunkSize,
vectorModel,
indexSize
]);
const chunkSettingModeMap = useMemo(() => {
if (chunkSettingMode === ChunkSettingModeEnum.auto) {
return {
chunkSize: TrainingModeMap.autoChunkSize,
indexSize: TrainingModeMap.autoIndexSize,
chunkSplitter: ''
};
} else {
return {
chunkSize: TrainingModeMap.chunkSize,
indexSize: TrainingModeMap.indexSize,
chunkSplitter
};
}
}, [chunkSettingMode, TrainingModeMap, chunkSplitter]);
const contextValue = {
...TrainingModeMap,
...chunkSettingModeMap,
importSource: source,
parentId,
activeStep,

View File

@@ -17,6 +17,7 @@ import MyBox from '@fastgpt/web/components/common/MyBox';
import Markdown from '@/components/Markdown';
import { useToast } from '@fastgpt/web/hooks/useToast';
import { getLLMMaxChunkSize } from '@fastgpt/global/core/dataset/training/utils';
import { collectionChunkForm2StoreChunkData } from '../../Form/CollectionChunkForm';
const PreviewData = () => {
const { t } = useTranslation();
@@ -28,8 +29,6 @@ const PreviewData = () => {
const sources = useContextSelector(DatasetImportContext, (v) => v.sources);
const importSource = useContextSelector(DatasetImportContext, (v) => v.importSource);
const chunkSize = useContextSelector(DatasetImportContext, (v) => v.chunkSize);
const chunkOverlapRatio = useContextSelector(DatasetImportContext, (v) => v.chunkOverlapRatio);
const processParamsForm = useContextSelector(DatasetImportContext, (v) => v.processParamsForm);
const [previewFile, setPreviewFile] = useState<ImportSourceItemType>();
@@ -37,13 +36,20 @@ const PreviewData = () => {
const { data = { chunks: [], total: 0 }, loading: isLoading } = useRequest2(
async () => {
if (!previewFile) return { chunks: [], total: 0 };
const chunkData = collectionChunkForm2StoreChunkData({
...processParamsForm.getValues(),
vectorModel: datasetDetail.vectorModel,
agentModel: datasetDetail.agentModel
});
if (importSource === ImportDataSourceEnum.fileCustom) {
const chunkSplitter = processParamsForm.getValues('chunkSplitter');
const { chunks } = splitText2Chunks({
text: previewFile.rawText || '',
chunkSize,
chunkSize: chunkData.chunkSize,
maxSize: getLLMMaxChunkSize(datasetDetail.agentModel),
overlapRatio: chunkOverlapRatio,
overlapRatio: 0.2,
customReg: chunkSplitter ? [chunkSplitter] : []
});
return {
@@ -64,18 +70,12 @@ const PreviewData = () => {
previewFile.externalFileUrl ||
previewFile.apiFileId ||
'',
externalFileId: previewFile.externalFileId,
customPdfParse: processParamsForm.getValues('customPdfParse'),
trainingType: processParamsForm.getValues('trainingType'),
chunkSettingMode: processParamsForm.getValues('chunkSettingMode'),
chunkSplitMode: processParamsForm.getValues('chunkSplitMode'),
chunkSize,
chunkSplitter: processParamsForm.getValues('chunkSplitter'),
overlapRatio: chunkOverlapRatio,
...chunkData,
selector: processParamsForm.getValues('webSelector'),
externalFileId: previewFile.externalFileId
customPdfParse: processParamsForm.getValues('customPdfParse'),
overlapRatio: 0.2
});
},
{

View File

@@ -37,6 +37,7 @@ import { useContextSelector } from 'use-context-selector';
import { DatasetPageContext } from '@/web/core/dataset/context/datasetPageContext';
import { DatasetImportContext, type ImportFormType } from '../Context';
import { type ApiCreateDatasetCollectionParams } from '@fastgpt/global/core/dataset/api.d';
import { collectionChunkForm2StoreChunkData } from '../../Form/CollectionChunkForm';
const Upload = () => {
const { t } = useTranslation();
@@ -48,10 +49,10 @@ const Upload = () => {
const datasetDetail = useContextSelector(DatasetPageContext, (v) => v.datasetDetail);
const retrainNewCollectionId = useRef('');
const { importSource, parentId, sources, setSources, processParamsForm, chunkSize, indexSize } =
useContextSelector(DatasetImportContext, (v) => v);
const { handleSubmit } = processParamsForm;
const { importSource, parentId, sources, setSources, processParamsForm } = useContextSelector(
DatasetImportContext,
(v) => v
);
const { totalFilesCount, waitingFilesCount, allFinished, hasCreatingFiles } = useMemo(() => {
const totalFilesCount = sources.length;
@@ -80,7 +81,13 @@ const Upload = () => {
}, [waitingFilesCount, totalFilesCount, allFinished, t]);
const { runAsync: startUpload, loading: isLoading } = useRequest2(
async ({ trainingType, chunkSplitter, qaPrompt, webSelector }: ImportFormType) => {
async ({ customPdfParse, webSelector, ...data }: ImportFormType) => {
const chunkData = collectionChunkForm2StoreChunkData({
...data,
vectorModel: datasetDetail.vectorModel,
agentModel: datasetDetail.agentModel
});
if (sources.length === 0) return;
const filterWaitingSources = sources.filter((item) => item.createStatus === 'waiting');
@@ -101,23 +108,12 @@ const Upload = () => {
const commonParams: ApiCreateDatasetCollectionParams & {
name: string;
} = {
...chunkData,
parentId,
datasetId: datasetDetail._id,
name: item.sourceName,
customPdfParse: processParamsForm.getValues('customPdfParse'),
trainingType,
imageIndex: processParamsForm.getValues('imageIndex'),
autoIndexes: processParamsForm.getValues('autoIndexes'),
chunkSettingMode: processParamsForm.getValues('chunkSettingMode'),
chunkSplitMode: processParamsForm.getValues('chunkSplitMode'),
chunkSize,
indexSize,
chunkSplitter,
qaPrompt: trainingType === DatasetCollectionDataProcessModeEnum.qa ? qaPrompt : undefined
customPdfParse
};
if (importSource === ImportDataSourceEnum.reTraining) {
@@ -280,7 +276,10 @@ const Upload = () => {
</TableContainer>
<Flex justifyContent={'flex-end'} mt={4}>
<Button isLoading={isLoading} onClick={handleSubmit((data) => startUpload(data))}>
<Button
isLoading={isLoading}
onClick={processParamsForm.handleSubmit((data) => startUpload(data))}
>
{totalFilesCount > 0 &&
`${t('dataset:total_num_files', {
total: totalFilesCount

View File

@@ -1,6 +1,6 @@
import React from 'react';
import { useContextSelector } from 'use-context-selector';
import { DatasetImportContext } from '../Context';
import { DatasetImportContext, defaultFormData } from '../Context';
import dynamic from 'next/dynamic';
import DataProcess from '../commonProgress/DataProcess';
@@ -48,18 +48,36 @@ const ReTraining = () => {
]);
processParamsForm.reset({
customPdfParse: collection.customPdfParse,
customPdfParse: collection.customPdfParse || false,
trainingType: collection.trainingType,
imageIndex: collection.imageIndex,
autoIndexes: collection.autoIndexes,
chunkSettingMode: collection.chunkSettingMode || ChunkSettingModeEnum.auto,
chunkSplitMode: collection.chunkSplitMode || DataChunkSplitModeEnum.size,
embeddingChunkSize: collection.chunkSize,
qaChunkSize: collection.chunkSize,
indexSize: collection.indexSize || 512,
chunkSplitter: collection.chunkSplitter,
webSelector: collection.metadata?.webPageSelector,
chunkTriggerType: collection.chunkTriggerType || defaultFormData.chunkTriggerType,
chunkTriggerMinSize: collection.chunkTriggerMinSize || defaultFormData.chunkTriggerMinSize,
dataEnhanceCollectionName:
collection.dataEnhanceCollectionName || defaultFormData.dataEnhanceCollectionName,
imageIndex: collection.imageIndex || defaultFormData.imageIndex,
autoIndexes: collection.autoIndexes || defaultFormData.autoIndexes,
chunkSettingMode: collection.chunkSettingMode || defaultFormData.chunkSettingMode,
chunkSplitMode: collection.chunkSplitMode || defaultFormData.chunkSplitMode,
paragraphChunkAIMode:
collection.paragraphChunkAIMode || defaultFormData.paragraphChunkAIMode,
paragraphChunkDeep: collection.paragraphChunkDeep || defaultFormData.paragraphChunkDeep,
paragraphChunkMinSize:
collection.paragraphChunkMinSize || defaultFormData.paragraphChunkMinSize,
paragraphChunkMaxSize:
collection.paragraphChunkMaxSize || defaultFormData.paragraphChunkMaxSize,
chunkSize: collection.chunkSize || defaultFormData.chunkSize,
chunkSplitter: collection.chunkSplitter || defaultFormData.chunkSplitter,
indexSize: collection.indexSize || defaultFormData.indexSize,
webSelector: collection.metadata?.webPageSelector || defaultFormData.webSelector,
qaPrompt: collection.qaPrompt || Prompt_AgentQA.description
});
}

View File

@@ -72,18 +72,26 @@ const MetaDataCard = ({ datasetId }: { datasetId: string }) => {
label: t('common:core.dataset.collection.metadata.Raw text length'),
value: collection.rawTextLength ?? '-'
},
{
label: t('dataset:collection_metadata_image_parse'),
value: collection.imageIndex ? 'Yes' : 'No'
},
{
label: t('dataset:auto_indexes'),
value: collection.autoIndexes ? 'Yes' : 'No'
},
{
label: t('dataset:collection.training_type'),
value: t(DatasetCollectionDataProcessModeMap[collection.trainingType]?.label as any)
},
...(collection.imageIndex !== undefined
? [
{
label: t('dataset:data_index_image'),
value: collection.imageIndex ? 'Yes' : 'No'
}
]
: []),
...(collection.autoIndexes !== undefined
? [
{
label: t('dataset:auto_indexes'),
value: collection.autoIndexes ? 'Yes' : 'No'
}
]
: []),
...(collection.chunkSize
? [
{