mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-27 08:25:07 +00:00
4.8.13 feature (#3118)
* chore(ui): login page & workflow page (#3046) * login page & number input & multirow select & llm select * workflow * adjust nodes * New file upload (#3058) * feat: toolNode aiNode readFileNode adapt new version * update docker-compose * update tip * feat: adapt new file version * perf: file input * fix: ts * feat: add chat history time label (#3024) * feat:add chat and logs time * feat: add chat history time label * code perf * code perf --------- Co-authored-by: 勤劳上班的卑微小张 <jiazhan.zhang@ggimage.com> * add chatType (#3060) * pref: slow query of full text search (#3044) * Adapt findLast api;perf: markdown zh format. (#3066) * perf: context code * fix: adapt findLast api * perf: commercial plugin run error * perf: markdown zh format * perf: dockerfile proxy (#3067) * fix ui (#3065) * fix ui * fix * feat: support array reference multi-select (#3041) * feat: support array reference multi-select * fix build * fix * fix loop multi-select * adjust condition * fix get value * array and non-array conversion * fix plugin input * merge func * feat: iframe code block;perf: workflow selector type (#3076) * feat: iframe code block * perf: workflow selector type * node pluginoutput check (#3074) * feat: View will move when workflow check error;fix: ui refresh error when continuous file upload (#3077) * fix: plugin output check * fix: ui refresh error when continuous file upload * feat: View will move when workflow check error * add dispatch try catch (#3075) * perf: workflow context split (#3083) * perf: workflow context split * perf: context * 4.8.13 test (#3085) * perf: workflow node ui * chat iframe url * feat: support sub route config (#3071) * feat: support sub route config * dockerfile * fix upload * delete unused code * 4.8.13 test (#3087) * fix: image expired * fix: datacard navbar ui * perf: build action * fix: workflow file upload refresh (#3088) * fix: http tool response (#3097) * loop node dynamic height (#3092) * loop node dynamic height * fix * fix * feat: support push chat log (#3093) * feat: custom uid/metadata * to: custom info * fix: chat push latest * feat: add chat log envs * refactor: move timer to pushChatLog * fix: using precise log --------- Co-authored-by: Finley Ge <m13203533462@163.com> * 4.8.13 test (#3098) * perf: loop node refresh * rename context * comment * fix: ts * perf: push chat log * array reference check & node ui (#3100) * feat: loop start add index (#3101) * feat: loop start add index * update doc * 4.8.13 test (#3102) * fix: loop index;edge parent check * perf: reference invalid check * fix: ts * fix: plugin select files and ai response check (#3104) * fix: plugin select files and ai response check * perf: text editor selector;tool call tip;remove invalid image url; * perf: select file * perf: drop files * feat: source id prefix env (#3103) * 4.8.13 test (#3106) * perf: select file * perf: drop files * perf: env template * 4.8.13 test (#3107) * perf: select file * perf: drop files * fix: imple mode adapt files * perf: push chat log (#3109) * fix: share page load title error (#3111) * 4.8.13 perf (#3112) * fix: share page load title error * update file input doc * perf: auto add file urls * perf: auto ser loop node offset height * 4.8.13 test (#3117) * perf: plugin * updat eaction * feat: add more share config (#3120) * feat: add more share config * add i18n en * fix: missing subroute (#3121) * perf: outlink config (#3128) * update action * perf: outlink config * fix: ts (#3129) * 更新 docSite 文档内容 (#3131) * fix: null pointer (#3130) * fix: null pointer * perf: not input text * update doc url * perf: outlink default value (#3134) * update doc (#3136) * 4.8.13 test (#3137) * update doc * perf: completions chat api * Restore docSite content based on upstream/4.8.13-dev (#3138) * Restore docSite content based on upstream/4.8.13-dev * 4813.md缺少更正 * update doc (#3141) --------- Co-authored-by: heheer <heheer@sealos.io> Co-authored-by: papapatrick <109422393+Patrickill@users.noreply.github.com> Co-authored-by: 勤劳上班的卑微小张 <jiazhan.zhang@ggimage.com> Co-authored-by: Finley Ge <32237950+FinleyGe@users.noreply.github.com> Co-authored-by: a.e. <49438478+I-Info@users.noreply.github.com> Co-authored-by: Finley Ge <m13203533462@163.com> Co-authored-by: Jiangween <145003935+Jiangween@users.noreply.github.com>
This commit is contained in:
@@ -0,0 +1,136 @@
|
||||
---
|
||||
title: '知识库搜索方案和参数'
|
||||
description: '本节会详细介绍 FastGPT 知识库结构设计,理解其 QA 的存储格式和多向量映射,以便更好的构建知识库。同时会介绍每个搜索参数的功能。这篇介绍主要以使用为主,详细原理不多介绍。'
|
||||
icon: 'language'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 404
|
||||
---
|
||||
|
||||
## 理解向量
|
||||
|
||||
FastGPT 采用了 RAG 中的 Embedding 方案构建知识库,要使用好 FastGPT 需要简单的理解`Embedding`向量是如何工作的及其特点。
|
||||
|
||||
人类的文字、图片、视频等媒介是无法直接被计算机理解的,要想让计算机理解两段文字是否有相似性、相关性,通常需要将它们转成计算机可以理解的语言,向量是其中的一种方式。
|
||||
|
||||
向量可以简单理解为一个数字数组,两个向量之间可以通过数学公式得出一个`距离`,距离越小代表两个向量的相似度越大。从而映射到文字、图片、视频等媒介上,可以用来判断两个媒介之间的相似度。向量搜索便是利用了这个原理。
|
||||
|
||||
而由于文字是有多种类型,并且拥有成千上万种组合方式,因此在转成向量进行相似度匹配时,很难保障其精确性。在向量方案构建的知识库中,通常使用`topk`召回的方式,也就是查找前`k`个最相似的内容,丢给大模型去做更进一步的`语义判断`、`逻辑推理`和`归纳总结`,从而实现知识库问答。因此,在知识库问答中,向量搜索的环节是最为重要的。
|
||||
|
||||
影响向量搜索精度的因素非常多,主要包括:向量模型的质量、数据的质量(长度,完整性,多样性)、检索器的精度(速度与精度之间的取舍)。与数据质量对应的就是检索词的质量。
|
||||
|
||||
检索器的精度比较容易解决,向量模型的训练略复杂,因此数据和检索词质量优化成了一个重要的环节。
|
||||
|
||||
|
||||
### 提高向量搜索精度的方法
|
||||
|
||||
1. 更好分词分段:当一段话的结构和语义是完整的,并且是单一的,精度也会提高。因此,许多系统都会优化分词器,尽可能的保障每组数据的完整性。
|
||||
2. 精简`index`的内容,减少向量内容的长度:当`index`的内容更少,更准确时,检索精度自然会提高。但与此同时,会牺牲一定的检索范围,适合答案较为严格的场景。
|
||||
3. 丰富`index`的数量,可以为同一个`chunk`内容增加多组`index`。
|
||||
4. 优化检索词:在实际使用过程中,用户的问题通常是模糊的或是缺失的,并不一定是完整清晰的问题。因此优化用户的问题(检索词)很大程度上也可以提高精度。
|
||||
5. 微调向量模型:由于市面上直接使用的向量模型都是通用型模型,在特定领域的检索精度并不高,因此微调向量模型可以很大程度上提高专业领域的检索效果。
|
||||
|
||||
## FastGPT 构建知识库方案
|
||||
|
||||
### 数据存储结构
|
||||
|
||||
在 FastGPT 中,整个知识库由库、集合和数据 3 部分组成。集合可以简单理解为一个`文件`。一个`库`中可以包含多个`集合`,一个`集合`中可以包含多组`数据`。最小的搜索单位是`库`,也就是说,知识库搜索时,是对整个`库`进行搜索,而集合仅是为了对数据进行分类管理,与搜索效果无关。(起码目前还是)
|
||||
|
||||

|
||||
|
||||
### 向量存储结构
|
||||
|
||||
FastGPT 采用了`PostgresSQL`的`PG Vector`插件作为向量检索器,索引为`HNSW`。且`PostgresSQL`仅用于向量检索(该引擎可以替换成其它数据库),`MongoDB`用于其他数据的存取。
|
||||
|
||||
在`MongoDB`的`dataset.datas`表中,会存储向量原数据的信息,同时有一个`indexes`字段,会记录其对应的向量ID,这是一个数组,也就是说,一组数据可以对应多个向量。
|
||||
|
||||
在`PostgresSQL`的表中,设置一个`vector`字段用于存储向量。在检索时,会先召回向量,再根据向量的ID,去`MongoDB`中寻找原数据内容,如果对应了同一组原数据,则进行合并,向量得分取最高得分。
|
||||
|
||||

|
||||
|
||||
### 多向量的目的和使用方式
|
||||
|
||||
在一组向量中,内容的长度和语义的丰富度通常是矛盾的,无法兼得。因此,FastGPT 采用了多向量映射的方式,将一组数据映射到多组向量中,从而保障数据的完整性和语义的丰富度。
|
||||
|
||||
你可以为一组较长的文本,添加多组向量,从而在检索时,只要其中一组向量被检索到,该数据也将被召回。
|
||||
|
||||
意味着,你可以通过标注数据块的方式,不断提高数据块的精度。
|
||||
|
||||
### 检索方案
|
||||
|
||||
1. 通过`问题优化`实现指代消除和问题扩展,从而增加连续对话的检索能力以及语义丰富度。
|
||||
2. 通过`Concat query`来增加`Rerank`连续对话的时,排序的准确性。
|
||||
3. 通过`RRF`合并方式,综合多个渠道的检索效果。
|
||||
4. 通过`Rerank`来二次排序,提高精度。
|
||||
|
||||

|
||||
|
||||
|
||||
## 搜索参数
|
||||
| | | |
|
||||
| --- |---| --- |
|
||||
||  |  |
|
||||
|
||||
### 搜索模式
|
||||
|
||||
#### 语义检索
|
||||
|
||||
语义检索是通过向量距离,计算用户问题与知识库内容的距离,从而得出“相似度”,当然这并不是语文上的相似度,而是数学上的。
|
||||
|
||||
优点:
|
||||
- 相近语义理解
|
||||
- 跨多语言理解(例如输入中文问题匹配英文知识点)
|
||||
- 多模态理解(文本,图片,音视频等)
|
||||
|
||||
缺点:
|
||||
- 依赖模型训练效果
|
||||
- 精度不稳定
|
||||
- 受关键词和句子完整度影响
|
||||
|
||||
#### 全文检索
|
||||
|
||||
采用传统的全文检索方式。适合查找关键的主谓语等。
|
||||
|
||||
#### 混合检索
|
||||
|
||||
同时使用向量检索和全文检索,并通过 RRF 公式进行两个搜索结果合并,一般情况下搜索结果会更加丰富准确。
|
||||
|
||||
由于混合检索后的查找范围很大,并且无法直接进行相似度过滤,通常需要进行利用重排模型进行一次结果重新排序,并利用重排的得分进行过滤。
|
||||
|
||||
#### 结果重排
|
||||
|
||||
利用`ReRank`模型对搜索结果进行重排,绝大多数情况下,可以有效提高搜索结果的准确率。不过,重排模型与问题的完整度(主谓语齐全)有一些关系,通常会先走问题优化后再进行搜索-重排。重排后可以得到一个`0-1`的得分,代表着搜索内容与问题的相关度,该分数通常比向量的得分更加精确,可以根据得分进行过滤。
|
||||
|
||||
FastGPT 会使用 `RRF` 对重排结果、向量搜索结果、全文检索结果进行合并,得到最终的搜索结果。
|
||||
|
||||
### 搜索过滤
|
||||
|
||||
#### 引用上限
|
||||
|
||||
每次搜索最多引用`n`个`tokens`的内容。
|
||||
|
||||
之所以不采用`top k`,是发现在混合知识库(问答库、文档库)时,不同`chunk`的长度差距很大,会导致`top k`的结果不稳定,因此采用了`tokens`的方式进行引用上限的控制。
|
||||
|
||||
#### 最低相关度
|
||||
|
||||
一个`0-1`的数值,会过滤掉一些低相关度的搜索结果。
|
||||
|
||||
该值仅在`语义检索`或使用`结果重排`时生效。
|
||||
|
||||
### 问题优化
|
||||
|
||||
#### 背景
|
||||
|
||||
在 RAG 中,我们需要根据输入的问题去数据库里执行 embedding 搜索,查找相关的内容,从而查找到相似的内容(简称知识库搜索)。
|
||||
|
||||
在搜索的过程中,尤其是连续对话的搜索,我们通常会发现后续的问题难以搜索到合适的内容,其中一个原因是知识库搜索只会使用“当前”的问题去执行。看下面的例子:
|
||||
|
||||

|
||||
|
||||
用户在提问“第二点是什么”的时候,只会去知识库里查找“第二点是什么”,压根查不到内容。实际上需要查询的是“QA结构是什么”。因此我们需要引入一个【问题优化】模块,来对用户当前的问题进行补全,从而使得知识库搜索能够搜索到合适的内容。使用补全后效果如下:
|
||||
|
||||

|
||||
|
||||
#### 实现方式
|
||||
|
||||
在进行`数据检索`前,会先让模型进行`指代消除`与`问题扩展`,一方面可以可以解决指代对象不明确问题,同时可以扩展问题的语义丰富度。你可以通过每次对话后的对话详情,查看补全的结果。
|
Reference in New Issue
Block a user