mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-28 00:56:26 +00:00
4.8.13 feature (#3118)
* chore(ui): login page & workflow page (#3046) * login page & number input & multirow select & llm select * workflow * adjust nodes * New file upload (#3058) * feat: toolNode aiNode readFileNode adapt new version * update docker-compose * update tip * feat: adapt new file version * perf: file input * fix: ts * feat: add chat history time label (#3024) * feat:add chat and logs time * feat: add chat history time label * code perf * code perf --------- Co-authored-by: 勤劳上班的卑微小张 <jiazhan.zhang@ggimage.com> * add chatType (#3060) * pref: slow query of full text search (#3044) * Adapt findLast api;perf: markdown zh format. (#3066) * perf: context code * fix: adapt findLast api * perf: commercial plugin run error * perf: markdown zh format * perf: dockerfile proxy (#3067) * fix ui (#3065) * fix ui * fix * feat: support array reference multi-select (#3041) * feat: support array reference multi-select * fix build * fix * fix loop multi-select * adjust condition * fix get value * array and non-array conversion * fix plugin input * merge func * feat: iframe code block;perf: workflow selector type (#3076) * feat: iframe code block * perf: workflow selector type * node pluginoutput check (#3074) * feat: View will move when workflow check error;fix: ui refresh error when continuous file upload (#3077) * fix: plugin output check * fix: ui refresh error when continuous file upload * feat: View will move when workflow check error * add dispatch try catch (#3075) * perf: workflow context split (#3083) * perf: workflow context split * perf: context * 4.8.13 test (#3085) * perf: workflow node ui * chat iframe url * feat: support sub route config (#3071) * feat: support sub route config * dockerfile * fix upload * delete unused code * 4.8.13 test (#3087) * fix: image expired * fix: datacard navbar ui * perf: build action * fix: workflow file upload refresh (#3088) * fix: http tool response (#3097) * loop node dynamic height (#3092) * loop node dynamic height * fix * fix * feat: support push chat log (#3093) * feat: custom uid/metadata * to: custom info * fix: chat push latest * feat: add chat log envs * refactor: move timer to pushChatLog * fix: using precise log --------- Co-authored-by: Finley Ge <m13203533462@163.com> * 4.8.13 test (#3098) * perf: loop node refresh * rename context * comment * fix: ts * perf: push chat log * array reference check & node ui (#3100) * feat: loop start add index (#3101) * feat: loop start add index * update doc * 4.8.13 test (#3102) * fix: loop index;edge parent check * perf: reference invalid check * fix: ts * fix: plugin select files and ai response check (#3104) * fix: plugin select files and ai response check * perf: text editor selector;tool call tip;remove invalid image url; * perf: select file * perf: drop files * feat: source id prefix env (#3103) * 4.8.13 test (#3106) * perf: select file * perf: drop files * perf: env template * 4.8.13 test (#3107) * perf: select file * perf: drop files * fix: imple mode adapt files * perf: push chat log (#3109) * fix: share page load title error (#3111) * 4.8.13 perf (#3112) * fix: share page load title error * update file input doc * perf: auto add file urls * perf: auto ser loop node offset height * 4.8.13 test (#3117) * perf: plugin * updat eaction * feat: add more share config (#3120) * feat: add more share config * add i18n en * fix: missing subroute (#3121) * perf: outlink config (#3128) * update action * perf: outlink config * fix: ts (#3129) * 更新 docSite 文档内容 (#3131) * fix: null pointer (#3130) * fix: null pointer * perf: not input text * update doc url * perf: outlink default value (#3134) * update doc (#3136) * 4.8.13 test (#3137) * update doc * perf: completions chat api * Restore docSite content based on upstream/4.8.13-dev (#3138) * Restore docSite content based on upstream/4.8.13-dev * 4813.md缺少更正 * update doc (#3141) --------- Co-authored-by: heheer <heheer@sealos.io> Co-authored-by: papapatrick <109422393+Patrickill@users.noreply.github.com> Co-authored-by: 勤劳上班的卑微小张 <jiazhan.zhang@ggimage.com> Co-authored-by: Finley Ge <32237950+FinleyGe@users.noreply.github.com> Co-authored-by: a.e. <49438478+I-Info@users.noreply.github.com> Co-authored-by: Finley Ge <m13203533462@163.com> Co-authored-by: Jiangween <145003935+Jiangween@users.noreply.github.com>
This commit is contained in:
9
docSite/content/zh-cn/docs/guide/course/_index.md
Normal file
9
docSite/content/zh-cn/docs/guide/course/_index.md
Normal file
@@ -0,0 +1,9 @@
|
||||
---
|
||||
weight: 100
|
||||
title: '基础教程'
|
||||
description: 'FastGPT 基础教程'
|
||||
icon: 'import_contacts'
|
||||
draft: false
|
||||
images: []
|
||||
---
|
||||
<!-- 100 ~ 200 -->
|
152
docSite/content/zh-cn/docs/guide/course/ai_settings.md
Normal file
152
docSite/content/zh-cn/docs/guide/course/ai_settings.md
Normal file
@@ -0,0 +1,152 @@
|
||||
---
|
||||
title: "AI 相关参数配置说明"
|
||||
description: "FastGPT AI 相关参数配置说明"
|
||||
icon: "sign_language"
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 104
|
||||
---
|
||||
|
||||
在 FastGPT 的 AI 对话模块中,有一个 AI 高级配置,里面包含了 AI 模型的参数配置,本文详细介绍这些配置的含义。
|
||||
|
||||
| | | |
|
||||
| --- | --- | --- |
|
||||
|  |  |  |
|
||||
|
||||
## 返回AI内容(高级编排特有)
|
||||
|
||||
这是一个开关,打开的时候,当 AI 对话模块运行时,会将其输出的内容返回到浏览器(API响应);如果关闭,AI 输出的内容不会返回到浏览器,但是生成的内容仍可以通过【AI回复】进行输出。你可以将【AI回复】连接到其他模块中。
|
||||
|
||||
### 最大上下文
|
||||
|
||||
代表模型最多容纳的文字数量。
|
||||
|
||||
### 函数调用
|
||||
|
||||
支持函数调用的模型,在使用工具时更加准确。
|
||||
|
||||
### 温度
|
||||
|
||||
越低回答越严谨,少废话(实测下来,感觉差别不大)
|
||||
|
||||
### 回复上限
|
||||
|
||||
最大回复 token 数量。注意,是回复的Tokens!不是上下文 tokens。
|
||||
|
||||
### 系统提示词
|
||||
|
||||
被放置在上下文数组的最前面,role 为 system,用于引导模型。
|
||||
|
||||
## 引用模板 & 引用提示词
|
||||
|
||||
这两个参数与知识库问答场景相关,可以控制知识库相关的提示词。
|
||||
|
||||
### AI 对话消息组成
|
||||
|
||||
想使用明白这两个变量,首先要了解传递传递给 AI 模型的消息格式。它是一个数组,FastGPT 中这个数组的组成形式为:
|
||||
|
||||
```json
|
||||
[
|
||||
内置提示词(config.json 配置,一般为空)
|
||||
系统提示词 (用户输入的提示词)
|
||||
历史记录
|
||||
问题(由引用提示词、引用模板和用户问题组成)
|
||||
]
|
||||
```
|
||||
|
||||
{{% alert icon="🍅" context="success" %}}
|
||||
Tips: 可以通过点击上下文按键查看完整的上下文组成,便于调试。
|
||||
{{% /alert %}}
|
||||
|
||||
### 引用模板和提示词设计
|
||||
|
||||
简易模式已移除该功能,仅在工作流中可配置,可点击工作流中`AI对话节点`内,知识库引用旁边的`setting icon`进行配置。随着模型的增强,这部分功能将逐步弱化。
|
||||
|
||||
引用模板和引用提示词通常是成对出现,引用提示词依赖引用模板。
|
||||
|
||||
FastGPT 知识库采用 QA 对(不一定都是问答格式,仅代表两个变量)的格式存储,在转义成字符串时候会根据**引用模板**来进行格式化。知识库包含多个可用变量: q, a, sourceId(数据的ID), index(第n个数据), source(数据的集合名、文件名),score(距离得分,0-1) 可以通过 {{q}} {{a}} {{sourceId}} {{index}} {{source}} {{score}} 按需引入。下面一个模板例子:
|
||||
|
||||
可以通过 [知识库结构讲解](/docs/guide/knowledge_base/dataset_engine/) 了解详细的知识库的结构。
|
||||
|
||||
#### 引用模板
|
||||
|
||||
```
|
||||
{instruction:"{{q}}",output:"{{a}}",source:"{{source}}"}
|
||||
```
|
||||
|
||||
搜索到的知识库,会自动将 q,a,source 替换成对应的内容。每条搜索到的内容,会通过 `\n` 隔开。例如:
|
||||
```
|
||||
{instruction:"电影《铃芽之旅》的导演是谁?",output:"电影《铃芽之旅》的导演是新海诚。",source:"手动输入"}
|
||||
{instruction:"本作的主人公是谁?",output:"本作的主人公是名叫铃芽的少女。",source:""}
|
||||
{instruction:"电影《铃芽之旅》男主角是谁?",output:"电影《铃芽之旅》男主角是宗像草太,由松村北斗配音。",source:""}
|
||||
{instruction:"电影《铃芽之旅》的编剧是谁?22",output:"新海诚是本片的编剧。",source:"手动输入"}
|
||||
```
|
||||
|
||||
#### 引用提示词
|
||||
|
||||
引用模板需要和引用提示词一起使用,提示词中可以写引用模板的格式说明以及对话的要求等。可以使用 {{quote}} 来使用 **引用模板**,使用 {{question}} 来引入问题。例如:
|
||||
|
||||
```
|
||||
你的背景知识:
|
||||
"""
|
||||
{{quote}}
|
||||
"""
|
||||
对话要求:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 背景知识无法回答问题时,你可以礼貌的的回答用户问题。
|
||||
我的问题是:"{{question}}"
|
||||
```
|
||||
|
||||
转义后则为:
|
||||
```
|
||||
你的背景知识:
|
||||
"""
|
||||
{instruction:"电影《铃芽之旅》的导演是谁?",output:"电影《铃芽之旅》的导演是新海诚。",source:"手动输入"}
|
||||
{instruction:"本作的主人公是谁?",output:"本作的主人公是名叫铃芽的少女。",source:""}
|
||||
{instruction:"电影《铃芽之旅》男主角是谁?",output:"电影《铃芽之旅》男主角是宗像草太,由松村北斗配音}
|
||||
"""
|
||||
对话要求:
|
||||
1. 背景知识是最新的,其中 instruction 是相关介绍,output 是预期回答或补充。
|
||||
2. 使用背景知识回答问题。
|
||||
3. 背景知识无法回答问题时,你可以礼貌的的回答用户问题。
|
||||
我的问题是:"{{question}}"
|
||||
```
|
||||
|
||||
#### 总结
|
||||
|
||||
引用模板规定了搜索出来的内容如何组成一句话,其由 q,a,index,source 多个变量组成。
|
||||
|
||||
引用提示词由`引用模板`和`提示词`组成,提示词通常是对引用模板的一个描述,加上对模型的要求。
|
||||
|
||||
### 引用模板和提示词设计 示例
|
||||
|
||||
#### 通用模板与问答模板对比
|
||||
|
||||
我们通过一组`你是谁`的手动数据,对通用模板与问答模板的效果进行对比。此处特意打了个搞笑的答案,通用模板下 GPT35 就变得不那么听话了,而问答模板下 GPT35 依然能够回答正确。这是由于结构化的提示词,在大语言模型中具有更强的引导作用。
|
||||
|
||||
{{% alert icon="🍅" context="success" %}}
|
||||
Tips: 建议根据不同的场景,每种知识库仅选择1类数据类型,这样有利于充分发挥提示词的作用。
|
||||
{{% /alert %}}
|
||||
|
||||
| 通用模板配置及效果 | 问答模板配置及效果 |
|
||||
| --- | --- |
|
||||
|  |  |
|
||||
|  |  |
|
||||
|  |  |
|
||||
|
||||
#### 严格模板
|
||||
|
||||
使用非严格模板,我们随便询问一个不在知识库中的内容,模型通常会根据其自身知识进行回答。
|
||||
|
||||
| 非严格模板效果 | 选择严格模板 | 严格模板效果 |
|
||||
| --- | --- | --- |
|
||||
|  |  | |
|
||||
|
||||
#### 提示词设计思路
|
||||
|
||||
1. 使用序号进行不同要求描述。
|
||||
2. 使用首先、然后、最后等词语进行描述。
|
||||
3. 列举不同场景的要求时,尽量完整,不要遗漏。例如:背景知识完全可以回答、背景知识可以回答一部分、背景知识与问题无关,3种场景都说明清楚。
|
||||
4. 巧用结构化提示,例如在问答模板中,利用了`instruction`和`output`,清楚的告诉模型,`output`是一个预期的答案。
|
||||
5. 标点符号正确且完整。
|
54
docSite/content/zh-cn/docs/guide/course/chat_input_guide.md
Normal file
54
docSite/content/zh-cn/docs/guide/course/chat_input_guide.md
Normal file
@@ -0,0 +1,54 @@
|
||||
---
|
||||
title: "对话问题引导"
|
||||
description: "FastGPT 对话问题引导"
|
||||
icon: "code"
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 106
|
||||
---
|
||||
|
||||

|
||||
|
||||
## 什么是自定义问题引导
|
||||
|
||||
你可以为你的应用提前预设一些问题,用户在输入时,会根据输入的内容,动态搜索这些问题作为提示,从而引导用户更快的进行提问。
|
||||
|
||||
你可以直接在 FastGPT 中配置词库,或者提供自定义词库接口。
|
||||
|
||||
## 自定义词库接口
|
||||
|
||||
需要保证这个接口可以被用户浏览器访问。
|
||||
|
||||
**请求:**
|
||||
|
||||
```bash
|
||||
curl --location --request GET 'http://localhost:3000/api/core/chat/inputGuide/query?appId=663c75302caf8315b1c00194&searchKey=你'
|
||||
```
|
||||
|
||||
其中 `appId` 为应用ID,`searchKey` 为搜索关键字,最多是50个字符。
|
||||
|
||||
**响应**
|
||||
|
||||
```json
|
||||
{
|
||||
"code": 200,
|
||||
"statusText": "",
|
||||
"message": "",
|
||||
"data": [
|
||||
"是你",
|
||||
"你是谁呀",
|
||||
"你好好呀",
|
||||
"你好呀",
|
||||
"你是谁!",
|
||||
"你好"
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
data是一个数组,包含了搜索到的问题,最多只需要返回5个问题。
|
||||
|
||||
|
||||
**参数说明:**
|
||||
|
||||
- appId - 应用ID
|
||||
- searchKey - 搜索关键字
|
50
docSite/content/zh-cn/docs/guide/course/collection_tags.md
Normal file
50
docSite/content/zh-cn/docs/guide/course/collection_tags.md
Normal file
@@ -0,0 +1,50 @@
|
||||
---
|
||||
title: "知识库集合标签"
|
||||
description: "FastGPT 知识库集合标签使用说明"
|
||||
icon: "developer_guide"
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 109
|
||||
---
|
||||
|
||||
知识库集合标签是 FastGPT 商业版特有功能。它允许你对知识库中的数据集合添加标签进行分类,更高效地管理知识库数据。
|
||||
|
||||
而进一步可以在问答中,搜索知识库时添加集合过滤,实现更精确的搜索。
|
||||
|
||||
| | | |
|
||||
| --------------------- | --------------------- | --------------------- |
|
||||
|  |  |  |
|
||||
|
||||
## 标签基础操作说明
|
||||
|
||||
在知识库详情页面,可以对标签进行管理,可执行的操作有
|
||||
|
||||
- 创建标签
|
||||
- 修改标签名
|
||||
- 删除标签
|
||||
- 将一个标签赋给多个数据集合
|
||||
- 给一个数据集合添加多个标签
|
||||
|
||||
也可以利用标签对数据集合进行筛选
|
||||
|
||||
## 知识库搜索-集合过滤说明
|
||||
|
||||
利用标签可以在知识库搜索时,通过填写「集合过滤」这一栏来实现更精确的搜索,具体的填写示例如下
|
||||
|
||||
```json
|
||||
{
|
||||
"tags": {
|
||||
"$and": ["标签 1","标签 2"],
|
||||
"$or": ["有 $and 标签时,and 生效,or 不生效"]
|
||||
},
|
||||
"createTime": {
|
||||
"$gte": "YYYY-MM-DD HH:mm 格式即可,集合的创建时间大于该时间",
|
||||
"$lte": "YYYY-MM-DD HH:mm 格式即可,集合的创建时间小于该时间,可和 $gte 共同使用"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
在填写时有两个注意的点,
|
||||
|
||||
- 标签值可以为 `string` 类型的标签名,也可以为 `null`,而 `null` 代表着未设置标签的数据集合
|
||||
- 标签过滤有 `$and` 和 `$or` 两种条件类型,在同时设置了 `$and` 和 `$or` 的情况下,只有 `$and` 会生效
|
113
docSite/content/zh-cn/docs/guide/course/fileInput.md
Normal file
113
docSite/content/zh-cn/docs/guide/course/fileInput.md
Normal file
@@ -0,0 +1,113 @@
|
||||
---
|
||||
title: '文件输入功能介绍'
|
||||
description: 'FastGPT 文件输入功能介绍'
|
||||
icon: 'description'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 110
|
||||
---
|
||||
|
||||
从 4.8.9 版本起,FastGPT 支持在`简易模式`和`工作流`中,配置用户上传文件、图片功能。下面先简单介绍下如何使用文件输入功能,最后是介绍下文件解析的工作原理。
|
||||
|
||||
|
||||
## 简易模式中使用
|
||||
|
||||
简易模式打开文件上传后,会使用工具调用模式,也就是由模型自行决策,是否需要读取文件内容。
|
||||
|
||||
可以找到左侧文件上传的配置项,点击其右侧的`开启`/`关闭`按键,即可打开配置弹窗。
|
||||
|
||||

|
||||
|
||||
随后,你的调试对话框中,就会出现一个文件选择的 icon,可以点击文件选择 icon,选择你需要上传的文件。
|
||||
|
||||

|
||||
|
||||
**工作模式**
|
||||
|
||||
从 4.8.13 版本起,简易模式的文件读取将会强制解析文件并放入 system 提示词中,避免连续对话时,模型有时候不会主动调用读取文件的工具。
|
||||
|
||||
## 工作流中使用
|
||||
|
||||
工作流中,可以在系统配置中,找到`文件输入`配置项,点击其右侧的`开启`/`关闭`按键,即可打开配置弹窗。
|
||||
|
||||

|
||||
|
||||
在工作流中,使用文件的方式很多,最简单的就是类似下图中,直接通过工具调用接入文档解析,实现和简易模式一样的效果。
|
||||
|
||||
| | |
|
||||
| --------------------- | --------------------- |
|
||||
|  |  |
|
||||
|
||||
当然,你也可以在工作流中,对文档进行内容提取、内容分析等,然后将分析的结果传递给 HTTP 或者其他模块,从而实现文件处理的 SOP。
|
||||
|
||||

|
||||
|
||||
## 文档解析工作原理
|
||||
|
||||
不同于图片识别,LLM 模型目前没有支持直接解析文档的能力,所有的文档“理解”都是通过文档转文字后拼接 prompt 实现。这里通过几个 FAQ 来解释文档解析的工作原理,理解文档解析的原理,可以更好的在工作流中使用文档解析功能。
|
||||
|
||||
### 上传的文件如何存储在数据库中
|
||||
|
||||
FastGPT 的对话记录存储结构中,role=user 的消息,value 值会按以下结构存储:
|
||||
|
||||
```ts
|
||||
type UserChatItemValueItemType = {
|
||||
type: 'text' | 'file'
|
||||
text?: {
|
||||
content: string;
|
||||
};
|
||||
file?: {
|
||||
type: 'img' | 'doc'
|
||||
name?: string;
|
||||
url: string;
|
||||
};
|
||||
};
|
||||
```
|
||||
|
||||
也就是说,上传的图片和文档,都会以 URL 的形式存储在库中,并不会存储`解析后的文档内容`。
|
||||
|
||||
### 图片如何处理
|
||||
|
||||
文档解析节点不会处理图片,图片链接会被过滤,图片识别请直接使用支持图片识别的 LLM 模型。
|
||||
|
||||
### 文档解析节点如何工作
|
||||
|
||||
文档解析依赖文档解析节点,这个节点会接收一个`array<string>`类型的输入,对应的是文件输入的 URL;输出的是一个`string`,对应的是文档解析后的内容。
|
||||
|
||||
* 在文档解析节点中,只会解析`文档`类型的 URL,它是通过文件 URL 解析出来的`文名件后缀`去判断的。如果你同时选择了文档和图片,图片会被忽略。
|
||||
* **文档解析节点,只会解析本轮工作流接收的文件,不会解析历史记录的文件。**
|
||||
* 多个文档内容如何拼接的
|
||||
|
||||
按下列的模板,对多个文件进行拼接,即文件名+文件内容的形式组成一个字符串,不同文档之间通过分隔符:`\n******\n` 进行分割。
|
||||
|
||||
```
|
||||
File: ${filename}
|
||||
<Content>
|
||||
${content}
|
||||
</Content>
|
||||
```
|
||||
|
||||
### AI节点中如何使用文档解析
|
||||
|
||||
在 AI 节点(AI对话/工具调用)中,新增了一个文档链接的输入,可以直接引用文档的地址,从而实现文档内容的引用。
|
||||
|
||||
它接收一个`Array<string>`类型的输入,最终这些 url 会被解析,并进行提示词拼接,放置在 role=system 的消息中。提示词模板如下:
|
||||
|
||||
```
|
||||
将 <FilesContent></FilesContent> 中的内容作为本次对话的参考:
|
||||
<FilesContent>
|
||||
{{quote}}
|
||||
</FilesContent>
|
||||
```
|
||||
|
||||
# 4.8.13版本起,关于文件上传的更新
|
||||
|
||||
由于与 4.8.9 版本有些差异,尽管我们做了向下兼容,避免工作流立即不可用。但是请尽快的按新版本规则进行调整工作流,后续将会去除兼容性代码。
|
||||
|
||||
1. 简易模式中,将会强制进行文件解析,不再由模型决策是否解析,保证每次都能参考文档。
|
||||
2. 文档解析:不再解析历史记录中的文件。
|
||||
3. 工具调用:支持直接选择文档引用,不需要再挂载文档解析工具。会自动解析历史记录中的文件。
|
||||
4. AI 对话:支持直接选择文档引用,不需要进过文档解析节点。会自动解析历史记录中的文件。
|
||||
5. 插件单独运行:不再支持全局文件;插件输入支持配置文件类型,可以取代全局文件上传。
|
||||
6. **工作流调用插件:不再自动传递工作流上传的文件到插件,需要手动给插件输入指定变量。**
|
||||
7. **工作流调用工作流:不再自动传递工作流上传的文件到子工作流,可以手动选择需要传递的文件链接。**
|
54
docSite/content/zh-cn/docs/guide/course/quick-start.md
Normal file
54
docSite/content/zh-cn/docs/guide/course/quick-start.md
Normal file
@@ -0,0 +1,54 @@
|
||||
---
|
||||
title: '快速上手'
|
||||
description: '快速体验 FastGPT 基础功能'
|
||||
icon: 'rocket_launch'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 102
|
||||
---
|
||||
|
||||
更多使用技巧,[查看视屏教程](https://www.bilibili.com/video/BV1sH4y1T7s9)
|
||||
|
||||
## 知识库
|
||||
|
||||
开始前,请准备一份测试电子文档,WORD,PDF,TXT,excel,markdown 都可以,比如公司休假制度,不涉密的销售说辞,产品知识等等。
|
||||
|
||||
这里使用 FastGPT 中文 README 文件为例。
|
||||
|
||||
首先我们需要创建一个知识库。
|
||||
|
||||

|
||||
|
||||
知识库创建完之后我们需要上传一点内容。
|
||||
|
||||
上传内容这里有四种模式:
|
||||
- 手动输入:手动输入问答对,是最精准的数据
|
||||
- QA 拆分:选择文本文件,让AI自动生成问答对
|
||||
- 直接分段:选择文本文件,直接将其按分段进行处理
|
||||
- CSV 导入:批量导入问答对
|
||||
|
||||
这里,我们选择 QA 拆分,让 AI 自动生成问答,若问答质量不高,可以后期手动修改。
|
||||
|
||||

|
||||
|
||||
点击上传后我们需要等待数据处理完成,等到我们上传的文件状态为可用。
|
||||
|
||||

|
||||
|
||||
## 应用
|
||||
|
||||
点击「应用」按钮来新建一个应用,这里有四个模板,我们选择「知识库 + 对话引导」。
|
||||
|
||||

|
||||
|
||||
应用创建后来再应用详情页找到「知识库」模块,把我们刚刚创建的知识库添加进去。
|
||||
|
||||

|
||||
|
||||
添加完知识库后记得点击「保存并预览」,这样我们的应用就和知识库关联起来了。
|
||||
|
||||

|
||||
|
||||
然后我们就可以愉快的开始聊天啦。
|
||||
|
||||

|
Reference in New Issue
Block a user