4.8.13 feature (#3118)

* chore(ui): login page & workflow page (#3046)

* login page & number input & multirow select & llm select

* workflow

* adjust nodes

* New file upload (#3058)

* feat: toolNode aiNode readFileNode adapt new version

* update docker-compose

* update tip

* feat: adapt new file version

* perf: file input

* fix: ts

* feat: add chat history time label (#3024)

* feat:add chat and logs time

* feat: add chat history time label

* code perf

* code perf

---------

Co-authored-by: 勤劳上班的卑微小张 <jiazhan.zhang@ggimage.com>

* add chatType (#3060)

* pref: slow query of full text search (#3044)

* Adapt findLast api;perf: markdown zh format. (#3066)

* perf: context code

* fix: adapt findLast api

* perf: commercial plugin run error

* perf: markdown zh format

* perf: dockerfile proxy (#3067)

* fix ui (#3065)

* fix ui

* fix

* feat: support array reference multi-select (#3041)

* feat: support array reference multi-select

* fix build

* fix

* fix loop multi-select

* adjust condition

* fix get value

* array and non-array conversion

* fix plugin input

* merge func

* feat: iframe code block;perf: workflow selector type (#3076)

* feat: iframe code block

* perf: workflow selector type

* node pluginoutput check (#3074)

* feat: View will move when workflow check error;fix: ui refresh error when continuous file upload (#3077)

* fix: plugin output check

* fix: ui refresh error when continuous file upload

* feat: View will move when workflow check error

* add dispatch try catch (#3075)

* perf: workflow context split (#3083)

* perf: workflow context split

* perf: context

* 4.8.13 test (#3085)

* perf: workflow node ui

* chat iframe url

* feat: support sub route config (#3071)

* feat: support sub route config

* dockerfile

* fix upload

* delete unused code

* 4.8.13 test (#3087)

* fix: image expired

* fix: datacard navbar ui

* perf: build action

* fix: workflow file upload refresh (#3088)

* fix: http tool response (#3097)

* loop node dynamic height (#3092)

* loop node dynamic height

* fix

* fix

* feat: support push chat log (#3093)

* feat: custom uid/metadata

* to: custom info

* fix: chat push latest

* feat: add chat log envs

* refactor: move timer to pushChatLog

* fix: using precise log

---------

Co-authored-by: Finley Ge <m13203533462@163.com>

* 4.8.13 test (#3098)

* perf: loop node refresh

* rename context

* comment

* fix: ts

* perf: push chat log

* array reference check & node ui (#3100)

* feat: loop start add index (#3101)

* feat: loop start add index

* update doc

* 4.8.13 test (#3102)

* fix: loop index;edge parent check

* perf: reference invalid check

* fix: ts

* fix: plugin select files and ai response check (#3104)

* fix: plugin select files and ai response check

* perf: text editor selector;tool call tip;remove invalid image url;

* perf: select file

* perf: drop files

* feat: source id prefix env (#3103)

* 4.8.13 test (#3106)

* perf: select file

* perf: drop files

* perf: env template

* 4.8.13 test (#3107)

* perf: select file

* perf: drop files

* fix: imple mode adapt files

* perf: push chat log (#3109)

* fix: share page load title error (#3111)

* 4.8.13 perf (#3112)

* fix: share page load title error

* update file input doc

* perf: auto add file urls

* perf: auto ser loop node offset height

* 4.8.13 test (#3117)

* perf: plugin

* updat eaction

* feat: add more share config (#3120)

* feat: add more share config

* add i18n en

* fix: missing subroute (#3121)

* perf: outlink config (#3128)

* update action

* perf: outlink config

* fix: ts (#3129)

* 更新 docSite 文档内容 (#3131)

* fix: null pointer (#3130)

* fix: null pointer

* perf: not input text

* update doc url

* perf: outlink default value (#3134)

* update doc (#3136)

* 4.8.13 test (#3137)

* update doc

* perf: completions chat api

* Restore docSite content based on upstream/4.8.13-dev (#3138)

* Restore docSite content based on upstream/4.8.13-dev

* 4813.md缺少更正

* update doc (#3141)

---------

Co-authored-by: heheer <heheer@sealos.io>
Co-authored-by: papapatrick <109422393+Patrickill@users.noreply.github.com>
Co-authored-by: 勤劳上班的卑微小张 <jiazhan.zhang@ggimage.com>
Co-authored-by: Finley Ge <32237950+FinleyGe@users.noreply.github.com>
Co-authored-by: a.e. <49438478+I-Info@users.noreply.github.com>
Co-authored-by: Finley Ge <m13203533462@163.com>
Co-authored-by: Jiangween <145003935+Jiangween@users.noreply.github.com>
This commit is contained in:
Archer
2024-11-13 11:29:53 +08:00
committed by GitHub
parent e1f5483432
commit e9d52ada73
449 changed files with 7626 additions and 4180 deletions

View File

@@ -0,0 +1,8 @@
---
title: "应用搭建案例"
description: "FastGPT 应用场景及功能实现的搭建案例"
icon: "construction"
draft: false
weight: 600
---
<!-- 600 ~ 700 -->

View File

@@ -0,0 +1,471 @@
---
title: 'Dalle3 绘图'
description: '使用 HTTP 模块绘制图片'
icon: 'image'
draft: false
toc: true
weight: 614
---
| | |
| --------------------- | --------------------- |
| ![](/imgs/demo-dalle1.webp) | ![](/imgs/demo-dalle2.webp) |
## OpenAI Dalle3 接口
先来看下官方接口的参数和响应值:
Body
```json
{
"model": "dall-e-3",
"prompt": "A cute baby sea otter",
"n": 1,
"size": "1024x1024"
}
```
Response
```json
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
```
## 编排思路
1. 通过 AI 来优化图片绘制的提示词(这步省略了,自己找提示词即可)
2. 通过 `【HTTP 请求】模块` 调用 Dalle3 接口,获取图片的 URL。
3. 通过 `【文本加工】模块` 来构建 `Markdown` 的图片格式。
4. 通过 `【指定回复】模块` 来直接输出图片链接。
### 1. 构建 HTTP 模块
请求参数直接复制 Dalle3 接口的即可,并求改 prompt 为变量。需要增加一个 `Headers.Authorization`
Body:
```json
{
"model": "dall-e-3",
"prompt": "{{prompt}}",
"n": 1,
"size": "1024x1024"
}
```
Headers:
`Authorization: Bearer sk-xxx`
Response:
响应值需要根据 Dalle3 接口的返回值进行获取我们只绘制了1张图片所以只需要取第一张图片的 URL 即可。给 HTTP 模块增加一个自定义输出 `data[0].url`
### 2. 文本加工 - 构建图片链接
`Markdown` 语法中 `![图片描述](图片链接)` 表示插入图片图片链接由【HTTP 请求】模块输出。
因此可以增加一个输入来接收 `【HTTP 请求】模块` 的图片链接输出,并在 `【文本加工】模块 - 文本` 中通过变量来引用图片链接,从而得到一个完整的 `Markdown` 图片格式。
### 3. 指定回复
指定回复可以直接输出传入的内容到客户端,因此可以直接输出加工好的 `Markdown` 图片格式即可。
## 编排代码
{{% details title="编排配置" closed="true" %}}
```json
{
"nodes": [
{
"nodeId": "userGuide",
"name": "系统配置",
"intro": "可以配置应用的系统参数",
"avatar": "/imgs/workflow/userGuide.png",
"flowNodeType": "userGuide",
"position": {
"x": 531.2422736065552,
"y": -486.7611729549753
},
"inputs": [
{
"key": "welcomeText",
"renderTypeList": [
"hidden"
],
"valueType": "string",
"label": "core.app.Welcome Text",
"value": ""
},
{
"key": "variables",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "core.app.Chat Variable",
"value": []
},
{
"key": "questionGuide",
"valueType": "boolean",
"renderTypeList": [
"hidden"
],
"label": "core.app.Question Guide",
"value": false
},
{
"key": "tts",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"value": {
"type": "web"
}
},
{
"key": "whisper",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"value": {
"open": false,
"autoSend": false,
"autoTTSResponse": false
}
},
{
"key": "scheduleTrigger",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"value": null
}
],
"outputs": []
},
{
"nodeId": "448745",
"name": "流程开始",
"intro": "",
"avatar": "/imgs/workflow/userChatInput.svg",
"flowNodeType": "workflowStart",
"position": {
"x": 532.1275542407774,
"y": 46.03775600322817
},
"inputs": [
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "用户问题",
"required": true,
"toolDescription": "用户问题"
}
],
"outputs": [
{
"id": "userChatInput",
"key": "userChatInput",
"label": "core.module.input.label.user question",
"valueType": "string",
"type": "static"
}
]
},
{
"nodeId": "tMyUnRL5jIrC",
"name": "HTTP 请求",
"intro": "可以发出一个 HTTP 请求,实现更为复杂的操作(联网搜索、数据库查询等)",
"avatar": "/imgs/workflow/http.png",
"flowNodeType": "httpRequest468",
"showStatus": true,
"position": {
"x": 921.2377506442713,
"y": -483.94114977914256
},
"inputs": [
{
"key": "system_addInputParam",
"renderTypeList": [
"addInputParam"
],
"valueType": "dynamic",
"label": "",
"required": false,
"description": "core.module.input.description.HTTP Dynamic Input",
"editField": {
"key": true,
"valueType": true
}
},
{
"key": "prompt",
"valueType": "string",
"label": "prompt",
"renderTypeList": [
"reference"
],
"description": "",
"canEdit": true,
"editField": {
"key": true,
"valueType": true
},
"value": [
"448745",
"userChatInput"
]
},
{
"key": "system_httpMethod",
"renderTypeList": [
"custom"
],
"valueType": "string",
"label": "",
"value": "POST",
"required": true
},
{
"key": "system_httpReqUrl",
"renderTypeList": [
"hidden"
],
"valueType": "string",
"label": "",
"description": "core.module.input.description.Http Request Url",
"placeholder": "https://api.ai.com/getInventory",
"required": false,
"value": "https://api.openai.com/v1/images/generations"
},
{
"key": "system_httpHeader",
"renderTypeList": [
"custom"
],
"valueType": "any",
"value": [
{
"key": "Authorization",
"type": "string",
"value": "Bearer "
}
],
"label": "",
"description": "core.module.input.description.Http Request Header",
"placeholder": "core.module.input.description.Http Request Header",
"required": false
},
{
"key": "system_httpParams",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"value": [],
"label": "",
"required": false
},
{
"key": "system_httpJsonBody",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"value": "{\n \"model\": \"dall-e-3\",\n \"prompt\": \"{{prompt}}\",\n \"n\": 1,\n \"size\": \"1024x1024\"\n}",
"label": "",
"required": false
}
],
"outputs": [
{
"id": "system_addOutputParam",
"key": "system_addOutputParam",
"type": "dynamic",
"valueType": "dynamic",
"label": "",
"editField": {
"key": true,
"valueType": true
}
},
{
"id": "httpRawResponse",
"key": "httpRawResponse",
"label": "原始响应",
"description": "HTTP请求的原始响应。只能接受字符串或JSON类型响应数据。",
"valueType": "any",
"type": "static"
},
{
"id": "DeKGGioBwaMf",
"type": "dynamic",
"key": "data[0].url",
"valueType": "string",
"label": "data[0].url"
}
]
},
{
"nodeId": "CO3POL8svbbi",
"name": "文本加工",
"intro": "可对固定或传入的文本进行加工后输出,非字符串类型数据最终会转成字符串类型。",
"avatar": "/imgs/workflow/textEditor.svg",
"flowNodeType": "pluginModule",
"showStatus": false,
"position": {
"x": 1417.5940290051137,
"y": -478.81889618104356
},
"inputs": [
{
"key": "system_addInputParam",
"valueType": "dynamic",
"label": "动态外部数据",
"renderTypeList": [
"addInputParam"
],
"required": false,
"description": "",
"canEdit": false,
"value": "",
"editField": {
"key": true
},
"dynamicParamDefaultValue": {
"inputType": "reference",
"valueType": "string",
"required": true
}
},
{
"key": "url",
"valueType": "string",
"label": "url",
"renderTypeList": [
"reference"
],
"required": true,
"description": "",
"canEdit": true,
"editField": {
"key": true
},
"value": [
"tMyUnRL5jIrC",
"DeKGGioBwaMf"
]
},
{
"key": "文本",
"valueType": "string",
"label": "文本",
"renderTypeList": [
"textarea"
],
"required": true,
"description": "",
"canEdit": false,
"value": "![]({{url}})",
"editField": {
"key": true
},
"maxLength": "",
"dynamicParamDefaultValue": {
"inputType": "reference",
"valueType": "string",
"required": true
}
}
],
"outputs": [
{
"id": "text",
"type": "static",
"key": "text",
"valueType": "string",
"label": "text",
"description": ""
}
],
"pluginId": "community-textEditor"
},
{
"nodeId": "7mapnCgHfKW6",
"name": "指定回复",
"intro": "该模块可以直接回复一段指定的内容。常用于引导、提示。非字符串内容传入时,会转成字符串进行输出。",
"avatar": "/imgs/workflow/reply.png",
"flowNodeType": "answerNode",
"position": {
"x": 1922.5628399315042,
"y": -471.67391598231796
},
"inputs": [
{
"key": "text",
"renderTypeList": [
"textarea",
"reference"
],
"valueType": "string",
"label": "core.module.input.label.Response content",
"description": "core.module.input.description.Response content",
"placeholder": "core.module.input.description.Response content",
"selectedTypeIndex": 1,
"value": [
"CO3POL8svbbi",
"text"
]
}
],
"outputs": []
}
],
"edges": [
{
"source": "448745",
"target": "tMyUnRL5jIrC",
"sourceHandle": "448745-source-right",
"targetHandle": "tMyUnRL5jIrC-target-left"
},
{
"source": "tMyUnRL5jIrC",
"target": "CO3POL8svbbi",
"sourceHandle": "tMyUnRL5jIrC-source-right",
"targetHandle": "CO3POL8svbbi-target-left"
},
{
"source": "CO3POL8svbbi",
"target": "7mapnCgHfKW6",
"sourceHandle": "CO3POL8svbbi-source-right",
"targetHandle": "7mapnCgHfKW6-target-left"
}
]
}
```
{{% /details %}}

View File

@@ -0,0 +1,97 @@
---
title: "英语作文纠错机器人"
description: "使用 FastGPT 创建一个用于英语作文纠错的机器人,帮助用户检测并纠正语言错误"
icon: "spellcheck"
draft: false
toc: true
weight: 608
---
FastGPT 提供了一种基于 LLM Model 搭建应用的简便方式。
本文通过搭建一个英语作文纠错机器人,介绍一下如何使用 **工作流**
## 搭建过程
### 1. 创建工作流
![](/imgs/spellcheck1.png)
可以从 *多轮翻译机器人* 开始创建。
> 多轮翻译机器人是 @米开朗基杨 同学创建的,同样也是一个值得学习的工作流。
### 2. 获取输入,使用大模型进行分析
我们期望让大模型处理文字,返回一个结构化的数据,由我们自己处理。
![](/imgs/spellcheck2.png)
**提示词** 是最重要的一个参数,这里提供的提示词仅供参考:
~~~Markdown
## 角色
资深英语写作专家
## 任务
对输入的原文进行分析。 找出其中的各种错误, 包括但不限于单词拼写错误、 语法错误等。
注意: 忽略标点符号前后空格的问题。
注意: 对于存在错误的句子, 提出修改建议是指指出这个句子中的具体部分, 然后提出将这一个部分修改替换为什么。
## 输出格式
不要使用 Markdown 语法, 输入 JSON 格式的内容。
输出的"reason"的内容使用中文。
直接输出一个列表, 其成员为一个相同类型的对象, 定义如下
您正在找回 FastGPT 账号
```
{
“raw”: string; // 表示原文
“reason”: string; // 表示原因
“suggestion”: string; // 修改建议
}
```
~~~
可以在模型选择的窗口中设置禁用 AI 回复。
这样就看不到输出的 json 格式的内容了。
![](/imgs/spellcheck3.png)
### 3. 数据处理
上面的大模型输出了一个 json这里要进行数据处理。数据处理可以使用代码执行组件。
![](/imgs/spellcheck4.png)
```JavaScript
function main({data}){
const array = JSON.parse(data)
return {
content: array.map(
(item, index) => {
return `
## 分析${index+1}
- **错误**: ${item.raw}
- **分析**: ${item.reason}
- **修改建议**: ${item.suggestion}
`
}
).join('')
}
}
```
上面的代码将 JSON 解析为 Object, 然后拼接成一串 Markdown 语法的字符串。
FastGPT 的指定回复组件可以将 Markdown 解析为 Html 返回。
## 发布
可以使用发布渠道进行发布。
![](/imgs/spellcheck5.png)
可以选择通过 URL 访问,或者是直接嵌入你的网页中。
> [点我使用](https://share.fastgpt.in/chat/share?shareId=b4r173wkcjae7wpnexcvmyc3)

View File

@@ -0,0 +1,411 @@
---
title: '发送飞书webhook通知'
description: '利用工具调用模块发送一个飞书webhook通知'
icon: 'image'
draft: false
toc: true
weight: 618
---
该文章展示如何发送一个简单的飞书webhook通知以此类推发送其他类型的通知也可以这么操作。
| | |
| --------------------- | --------------------- |
| ![](/imgs/feishuwebhook1.webp) | ![](/imgs/feishuwebhook2.webp) |
## 1. 准备飞书机器人
| | | |
| --------------------- | --------------------- |--------------------- |
| ![](/imgs/feishuwebhook3.png) | ![](/imgs/feishuwebhook4.webp) |![](/imgs/feishuwebhook5.png) |
## 2. 导入编排代码
复制下面配置点击「高级编排」右上角的导入按键导入该配置导入后将飞书提供的接口地址复制到「HTTP 模块」。
{{% details title="编排配置" closed="true" %}}
```json
{
"nodes": [
{
"nodeId": "userGuide",
"name": "系统配置",
"intro": "可以配置应用的系统参数",
"avatar": "/imgs/workflow/userGuide.png",
"flowNodeType": "userGuide",
"position": {
"x": 303.41163758039283,
"y": -552.297639861266
},
"version": "481",
"inputs": [],
"outputs": []
},
{
"nodeId": "workflowStartNodeId",
"name": "流程开始",
"intro": "",
"avatar": "/imgs/workflow/userChatInput.svg",
"flowNodeType": "workflowStart",
"position": {
"x": 529.3935295017156,
"y": 197.114018410347
},
"version": "481",
"inputs": [
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "用户问题",
"required": true,
"toolDescription": "用户问题"
}
],
"outputs": [
{
"id": "userChatInput",
"key": "userChatInput",
"label": "core.module.input.label.user question",
"valueType": "string",
"type": "static"
}
]
},
{
"nodeId": "u6IAOEssxoZT",
"name": "工具调用",
"intro": "通过AI模型自动选择一个或多个功能块进行调用也可以对插件进行调用。",
"avatar": "/imgs/workflow/tool.svg",
"flowNodeType": "tools",
"showStatus": true,
"position": {
"x": 1003.146243538873,
"y": 48.52327869406625
},
"version": "481",
"inputs": [
{
"key": "model",
"renderTypeList": [
"settingLLMModel",
"reference"
],
"label": "core.module.input.label.aiModel",
"valueType": "string",
"llmModelType": "all",
"value": "gpt-3.5-turbo"
},
{
"key": "temperature",
"renderTypeList": [
"hidden"
],
"label": "",
"value": 0,
"valueType": "number",
"min": 0,
"max": 10,
"step": 1
},
{
"key": "maxToken",
"renderTypeList": [
"hidden"
],
"label": "",
"value": 2000,
"valueType": "number",
"min": 100,
"max": 4000,
"step": 50
},
{
"key": "systemPrompt",
"renderTypeList": [
"textarea",
"reference"
],
"max": 3000,
"valueType": "string",
"label": "core.ai.Prompt",
"description": "core.app.tip.chatNodeSystemPromptTip",
"placeholder": "core.app.tip.chatNodeSystemPromptTip"
},
{
"key": "history",
"renderTypeList": [
"numberInput",
"reference"
],
"valueType": "chatHistory",
"label": "core.module.input.label.chat history",
"description": "最多携带多少轮对话记录",
"required": true,
"min": 0,
"max": 50,
"value": 6
},
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "用户问题",
"required": true,
"value": [
"workflowStartNodeId",
"userChatInput"
]
}
],
"outputs": [
{
"id": "answerText",
"key": "answerText",
"label": "core.module.output.label.Ai response content",
"description": "core.module.output.description.Ai response content",
"valueType": "string",
"type": "static"
}
]
},
{
"nodeId": "fvY5hb0K646V",
"name": "工具调用终止",
"intro": "该模块需配置工具调用使用。当该模块被执行时本次工具调用将会强制结束并且不再调用AI针对工具调用结果回答问题。",
"avatar": "/imgs/workflow/toolStop.svg",
"flowNodeType": "stopTool",
"position": {
"x": 2367.838362362707,
"y": 732.355988936165
},
"version": "481",
"inputs": [],
"outputs": []
},
{
"nodeId": "x9rN2a4WnZmt",
"name": "HTTP 请求",
"intro": "向飞书发送一个webhooks通知信息。",
"avatar": "/imgs/workflow/http.png",
"flowNodeType": "httpRequest468",
"showStatus": true,
"position": {
"x": 1623.9214305901633,
"y": 22.777089001645862
},
"version": "486",
"inputs": [
{
"key": "system_addInputParam",
"renderTypeList": [
"addInputParam"
],
"valueType": "dynamic",
"label": "",
"required": false,
"description": "core.module.input.description.HTTP Dynamic Input",
"editField": {
"key": true,
"valueType": true
}
},
{
"valueType": "string",
"renderTypeList": [
"reference"
],
"key": "text",
"label": "text",
"toolDescription": "发送的消息",
"required": true,
"canEdit": true,
"editField": {
"key": true,
"description": true
}
},
{
"key": "system_httpMethod",
"renderTypeList": [
"custom"
],
"valueType": "string",
"label": "",
"value": "POST",
"required": true
},
{
"key": "system_httpReqUrl",
"renderTypeList": [
"hidden"
],
"valueType": "string",
"label": "",
"description": "core.module.input.description.Http Request Url",
"placeholder": "https://api.ai.com/getInventory",
"required": false,
"value": ""
},
{
"key": "system_httpHeader",
"renderTypeList": [
"custom"
],
"valueType": "any",
"value": [],
"label": "",
"description": "core.module.input.description.Http Request Header",
"placeholder": "core.module.input.description.Http Request Header",
"required": false
},
{
"key": "system_httpParams",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"value": [],
"label": "",
"required": false
},
{
"key": "system_httpJsonBody",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"value": "{\r\n \"msg_type\": \"text\",\r\n \"content\": {\r\n \"text\": \"{{text}}\"\r\n }\r\n}",
"label": "",
"required": false
}
],
"outputs": [
{
"id": "system_addOutputParam",
"key": "system_addOutputParam",
"type": "dynamic",
"valueType": "dynamic",
"label": "",
"editField": {
"key": true,
"valueType": true
}
},
{
"id": "error",
"key": "error",
"label": "请求错误",
"description": "HTTP请求错误信息成功时返回空",
"valueType": "object",
"type": "static"
},
{
"id": "httpRawResponse",
"key": "httpRawResponse",
"label": "原始响应",
"required": true,
"description": "HTTP请求的原始响应。只能接受字符串或JSON类型响应数据。",
"valueType": "any",
"type": "static"
}
]
},
{
"nodeId": "aGHGqH2oUupj",
"name": "指定回复",
"intro": "该模块可以直接回复一段指定的内容。常用于引导、提示。非字符串内容传入时,会转成字符串进行输出。",
"avatar": "/imgs/workflow/reply.png",
"flowNodeType": "answerNode",
"position": {
"x": 2350.7077940158674,
"y": 107.32448732713493
},
"version": "481",
"inputs": [
{
"key": "text",
"renderTypeList": [
"textarea",
"reference"
],
"valueType": "any",
"required": true,
"label": "core.module.input.label.Response content",
"description": "core.module.input.description.Response content",
"placeholder": "core.module.input.description.Response content",
"value": "嘻嘻,发送成功"
}
],
"outputs": []
}
],
"edges": [
{
"source": "workflowStartNodeId",
"target": "u6IAOEssxoZT",
"sourceHandle": "workflowStartNodeId-source-right",
"targetHandle": "u6IAOEssxoZT-target-left"
},
{
"source": "u6IAOEssxoZT",
"target": "x9rN2a4WnZmt",
"sourceHandle": "selectedTools",
"targetHandle": "selectedTools"
},
{
"source": "x9rN2a4WnZmt",
"target": "fvY5hb0K646V",
"sourceHandle": "x9rN2a4WnZmt-source-right",
"targetHandle": "fvY5hb0K646V-target-left"
},
{
"source": "x9rN2a4WnZmt",
"target": "aGHGqH2oUupj",
"sourceHandle": "x9rN2a4WnZmt-source-right",
"targetHandle": "aGHGqH2oUupj-target-left"
}
],
"chatConfig": {
"variables": [
{
"id": "txq1ca",
"key": "test",
"label": "测试",
"type": "custom",
"required": true,
"maxLen": 50,
"enums": [
{
"value": ""
}
]
}
],
"questionGuide": false,
"scheduledTriggerConfig": {
"cronString": "",
"timezone": "Asia/Shanghai",
"defaultPrompt": ""
},
"_id": "66715d4bf577287d39e35ecf"
}
}
```
{{% /details %}}
## 3. 流程说明
1. 为工具调用挂载一个HTTP模块功能描述写上调用飞书webhook发送一个通知。
2. HTTP模块的输入参数中填写飞书机器人的地址填写发送的通知内容。
3. HTTP模块输出连接上一个工具终止模块用于强制结束工具调用。不终止的话会把调用结果返回给模型模型会继续回答一次问题浪费 Tokens
4. HTTP模块输出再连上一个指定回复直接回复一个发送成功用于替代AI的回答。

View File

@@ -0,0 +1,432 @@
---
title: '固定开头和结尾内容'
description: '利用指定回复,创建固定的开头和结尾'
icon: 'healing'
draft: false
toc: true
weight: 610
---
![](/imgs/demo-fix-evidence1.jpg)
![](/imgs/demo-fix-evidence2.jpg)
如上图,可以通过指定回复编排一个固定的开头和结尾内容。
## 模块编排
复制下面配置,点击「高级编排」右上角的导入按键,导入该配置。
{{% details title="编排配置" closed="true" %}}
```json
{
"nodes": [
{
"nodeId": "7z5g5h",
"name": "流程开始",
"intro": "",
"avatar": "/imgs/workflow/userChatInput.svg",
"flowNodeType": "workflowStart",
"position": {
"x": -269.50851681351924,
"y": 1657.6123698022448
},
"inputs": [
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "问题输入",
"required": true,
"toolDescription": "用户问题",
"type": "systemInput",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0,
"value": [
"7z5g5h",
"userChatInput"
]
}
],
"outputs": [
{
"id": "userChatInput",
"type": "static",
"key": "userChatInput",
"valueType": "string",
"label": "core.module.input.label.user question"
}
]
},
{
"nodeId": "nlfwkc",
"name": "AI 对话",
"intro": "AI 大模型对话",
"avatar": "/imgs/workflow/AI.png",
"flowNodeType": "chatNode",
"showStatus": true,
"position": {
"x": 907.2058332478431,
"y": 1348.9992737142143
},
"inputs": [
{
"key": "model",
"renderTypeList": [
"settingLLMModel",
"reference"
],
"label": "core.module.input.label.aiModel",
"valueType": "string",
"type": "selectLLMModel",
"required": true,
"showTargetInApp": false,
"showTargetInPlugin": false,
"value": "gpt-3.5-turbo",
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "temperature",
"renderTypeList": [
"hidden"
],
"label": "",
"value": 0,
"valueType": "number",
"min": 0,
"max": 10,
"step": 1,
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "maxToken",
"renderTypeList": [
"hidden"
],
"label": "",
"value": 2000,
"valueType": "number",
"min": 100,
"max": 4000,
"step": 50,
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "isResponseAnswerText",
"renderTypeList": [
"hidden"
],
"label": "",
"value": true,
"valueType": "boolean",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "quoteTemplate",
"renderTypeList": [
"hidden"
],
"label": "",
"valueType": "string",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "quotePrompt",
"renderTypeList": [
"hidden"
],
"label": "",
"valueType": "string",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "systemPrompt",
"renderTypeList": [
"textarea",
"reference"
],
"max": 300,
"valueType": "string",
"label": "core.ai.Prompt",
"description": "core.app.tip.chatNodeSystemPromptTip",
"placeholder": "core.app.tip.chatNodeSystemPromptTip",
"type": "textarea",
"showTargetInApp": true,
"showTargetInPlugin": true,
"value": "",
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "history",
"renderTypeList": [
"numberInput",
"reference"
],
"valueType": "chatHistory",
"label": "core.module.input.label.chat history",
"required": true,
"min": 0,
"max": 30,
"value": 6,
"type": "numberInput",
"showTargetInApp": true,
"showTargetInPlugin": true,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "问题输入",
"required": true,
"toolDescription": "用户问题",
"type": "custom",
"showTargetInApp": true,
"showTargetInPlugin": true,
"connected": true,
"selectedTypeIndex": 0,
"value": [
"7z5g5h",
"userChatInput"
]
},
{
"key": "quoteQA",
"renderTypeList": [
"settingDatasetQuotePrompt"
],
"label": "",
"debugLabel": "知识库引用",
"description": "core.module.Dataset quote.Input description",
"valueType": "datasetQuote",
"type": "target",
"showTargetInApp": true,
"showTargetInPlugin": true,
"connected": true,
"selectedTypeIndex": 0,
"value": [
"fljhzy",
"quoteQA"
]
}
],
"outputs": [
{
"id": "answerText",
"type": "static",
"key": "answerText",
"valueType": "string",
"label": "core.module.output.label.Ai response content",
"description": "core.module.output.description.Ai response content"
},
{
"id": "history",
"type": "static",
"key": "history",
"valueType": "chatHistory",
"label": "core.module.output.label.New context",
"description": "core.module.output.description.New context"
}
]
},
{
"nodeId": "q9equb",
"name": "core.module.template.App system setting",
"intro": "可以配置应用的系统参数。",
"avatar": "/imgs/workflow/userGuide.png",
"flowNodeType": "userGuide",
"position": {
"x": -275.92529567956024,
"y": 1094.1001488133452
},
"inputs": [
{
"key": "welcomeText",
"renderTypeList": [
"hidden"
],
"valueType": "string",
"label": "core.app.Welcome Text",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"value": "你好,我是电影《星际穿越》 AI 助手,有什么可以帮助你的?\n[导演是谁]\n[剧情介绍]\n[票房分析]",
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "variables",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "core.module.Variable",
"value": [],
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "questionGuide",
"valueType": "boolean",
"renderTypeList": [
"hidden"
],
"label": "",
"type": "switch",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "tts",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "whisper",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": ""
},
{
"key": "scheduleTrigger",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"value": null
}
],
"outputs": []
},
{
"nodeId": "tc90wz",
"name": "指定回复",
"intro": "该模块可以直接回复一段指定的内容。常用于引导、提示。非字符串内容传入时,会转成字符串进行输出。",
"avatar": "/imgs/workflow/reply.png",
"flowNodeType": "answerNode",
"position": {
"x": 159.49274056478237,
"y": 1621.4635230667668
},
"inputs": [
{
"key": "text",
"renderTypeList": [
"textarea",
"reference"
],
"valueType": "any",
"label": "core.module.input.label.Response content",
"description": "core.module.input.description.Response content",
"placeholder": "core.module.input.description.Response content",
"type": "textarea",
"showTargetInApp": true,
"showTargetInPlugin": true,
"value": "这是开头\\n",
"connected": false,
"selectedTypeIndex": 0
}
],
"outputs": []
},
{
"nodeId": "U5T3dMVY4wj7",
"name": "指定回复",
"intro": "该模块可以直接回复一段指定的内容。常用于引导、提示。非字符串内容传入时,会转成字符串进行输出。",
"avatar": "/imgs/workflow/reply.png",
"flowNodeType": "answerNode",
"position": {
"x": 1467.0625486167608,
"y": 1597.346243737531
},
"inputs": [
{
"key": "text",
"renderTypeList": [
"textarea",
"reference"
],
"valueType": "string",
"label": "core.module.input.label.Response content",
"description": "core.module.input.description.Response content",
"placeholder": "core.module.input.description.Response content",
"value": "这是结尾"
}
],
"outputs": []
}
],
"edges": [
{
"source": "7z5g5h",
"target": "tc90wz",
"sourceHandle": "7z5g5h-source-right",
"targetHandle": "tc90wz-target-left"
},
{
"source": "tc90wz",
"target": "nlfwkc",
"sourceHandle": "tc90wz-source-right",
"targetHandle": "nlfwkc-target-left"
},
{
"source": "nlfwkc",
"target": "U5T3dMVY4wj7",
"sourceHandle": "nlfwkc-source-right",
"targetHandle": "U5T3dMVY4wj7-target-left"
}
]
}
```
{{% /details %}}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,853 @@
---
title: '实验室预约'
description: '展示高级编排操作数据库的能力'
icon: 'database'
draft: false
toc: true
weight: 612
---
| | |
| --------------------- | --------------------- |
| ![](/imgs/demo-appointment1.webp) | ![](/imgs/demo-appointment2.webp) |
| ![](/imgs/demo-appointment3.webp) | ![](/imgs/demo-appointment4.webp) |
本示例演示了利用工具调用,自动选择调用知识库搜索实验室相关内容,或调用 HTTP 模块实现数据库的 CRUD 操作。
以一个实验室预约为例,用户可以通过对话系统预约、取消、修改预约和查询预约记录。
## 1. 全局变量使用
通过设计一个全局变量,让用户输入姓名,模拟用户身份信息。实际使用过程中,通常是直接通过嵌入 Token 来标记用户身份。
## 2. 工具调用
![](/imgs/demo-appointment5.png)
背景知识中,引导模型调用工具去执行不通的操作。
{{% alert icon="🤗" context="warning" %}}
**Tips:** 这里需要增加适当的上下文,方便模型结合历史纪录进行判断和决策~
{{% /alert %}}
## 3. HTTP 模块
![](/imgs/demo-appointment6.jpg)
HTTP模块中需要设置 3 个工具参数:
- 预约行为:可取 get, put, post, delete 四个值分别对应查询、修改、新增、删除操作。当然你也可以写4个HTTP模块来分别处理。
- labname: 实验室名。非必填,因为查询和删除时候,不需要。
- time: 预约时间。
# 总结
1. 工具调用模块是非常强大的功能,可以在一定程度上替代问题分类和内容提取。
2. 通过工具模块,动态的调用不同的工具,可以将复杂业务解耦。
# 附件
## 编排配置
可直接复制,导入到 FastGPT 中。
{{% details title="编排配置" closed="true" %}}
```json
{
"nodes": [
{
"nodeId": "userChatInput",
"name": "流程开始",
"intro": "当用户发送一个内容后,流程将会从这个模块开始执行。",
"avatar": "/imgs/workflow/userChatInput.svg",
"flowNodeType": "workflowStart",
"position": {
"x": 309.7143912167367,
"y": 1501.2761754220846
},
"inputs": [
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "问题输入",
"required": true,
"toolDescription": "用户问题",
"type": "systemInput",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0,
"value": [
"userChatInput",
"userChatInput"
]
}
],
"outputs": [
{
"id": "userChatInput",
"type": "static",
"key": "userChatInput",
"valueType": "string",
"label": "core.module.input.label.user question"
}
]
},
{
"nodeId": "eg5upi",
"name": "指定回复",
"intro": "该模块可以直接回复一段指定的内容。常用于引导、提示。非字符串内容传入时,会转成字符串进行输出。",
"avatar": "/imgs/workflow/reply.png",
"flowNodeType": "answerNode",
"position": {
"x": 1962.729630445213,
"y": 2295.9791334948304
},
"inputs": [
{
"key": "text",
"renderTypeList": [
"textarea",
"reference"
],
"valueType": "any",
"label": "core.module.input.label.Response content",
"description": "core.module.input.description.Response content",
"placeholder": "core.module.input.description.Response content",
"type": "textarea",
"showTargetInApp": true,
"showTargetInPlugin": true,
"connected": true,
"selectedTypeIndex": 1,
"value": [
"40clf3",
"result"
]
}
],
"outputs": []
},
{
"nodeId": "kge59i",
"name": "用户引导",
"intro": "可以配置应用的系统参数。",
"avatar": "/imgs/workflow/userGuide.png",
"flowNodeType": "userGuide",
"position": {
"x": -327.218389965887,
"y": 1504.8056414948464
},
"inputs": [
{
"key": "welcomeText",
"renderTypeList": [
"hidden"
],
"valueType": "string",
"label": "core.app.Welcome Text",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"value": "你好,我是实验室助手,请问有什么可以帮助你的么?如需预约或修改预约实验室,请提供姓名、时间和实验室名称。\n[实验室介绍]\n[开放时间]\n[预约]",
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "variables",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "core.module.Variable",
"value": [
{
"id": "gt9b23",
"key": "name",
"label": "name",
"type": "input",
"required": true,
"maxLen": 50,
"enums": [
{
"value": ""
}
]
}
],
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "questionGuide",
"valueType": "boolean",
"renderTypeList": [
"hidden"
],
"label": "",
"type": "switch",
"showTargetInApp": false,
"showTargetInPlugin": false,
"value": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "tts",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"value": {
"type": "model",
"model": "tts-1",
"voice": "alloy"
},
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "whisper",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "scheduleTrigger",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"label": "",
"value": null
}
],
"outputs": []
},
{
"nodeId": "40clf3",
"name": "HTTP请求",
"intro": "可以发出一个 HTTP 请求,实现更为复杂的操作(联网搜索、数据库查询等)",
"avatar": "/imgs/workflow/http.png",
"flowNodeType": "httpRequest468",
"showStatus": true,
"position": {
"x": 1118.6532653446993,
"y": 1955.886106913907
},
"inputs": [
{
"key": "system_httpMethod",
"renderTypeList": [
"custom"
],
"valueType": "string",
"label": "",
"value": "POST",
"required": true,
"type": "custom",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"valueType": "string",
"renderTypeList": [
"reference"
],
"key": "action",
"label": "action",
"toolDescription": "预约行为,一共四种:\nget - 查询预约情况\nput - 更新预约\npost - 新增预约\ndelete - 删除预约",
"required": true,
"canEdit": true,
"editField": {
"key": true,
"description": true
}
},
{
"valueType": "string",
"renderTypeList": [
"reference"
],
"key": "labname",
"label": "labname",
"toolDescription": "实验室名称",
"required": false,
"canEdit": true,
"editField": {
"key": true,
"description": true
}
},
{
"valueType": "string",
"renderTypeList": [
"reference"
],
"key": "time",
"label": "time",
"toolDescription": "预约时间,按 YYYY/MM/DD HH:mm 格式返回",
"required": false,
"canEdit": true,
"editField": {
"key": true,
"description": true
}
},
{
"key": "system_httpReqUrl",
"renderTypeList": [
"hidden"
],
"valueType": "string",
"label": "",
"description": "core.module.input.description.Http Request Url",
"placeholder": "https://api.ai.com/getInventory",
"required": false,
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"value": "https://d8dns0.laf.dev/appointment-lab",
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "system_httpHeader",
"renderTypeList": [
"custom"
],
"valueType": "any",
"value": [],
"label": "",
"description": "core.module.input.description.Http Request Header",
"placeholder": "core.module.input.description.Http Request Header",
"required": false,
"type": "custom",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "system_httpParams",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"value": [],
"label": "",
"required": false,
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "system_httpJsonBody",
"renderTypeList": [
"hidden"
],
"valueType": "any",
"value": "{\r\n \"name\": \"{{name}}\",\r\n \"time\": \"{{time}}\",\r\n \"labname\": \"{{labname}}\",\r\n \"action\": \"{{action}}\"\r\n}",
"label": "",
"required": false,
"type": "hidden",
"showTargetInApp": false,
"showTargetInPlugin": false,
"connected": false,
"selectedTypeIndex": 0
},
{
"key": "system_addInputParam",
"renderTypeList": [
"addInputParam"
],
"valueType": "dynamic",
"label": "",
"required": false,
"description": "core.module.input.description.HTTP Dynamic Input",
"editField": {
"key": true,
"valueType": true
}
}
],
"outputs": [
{
"id": "system_addOutputParam",
"type": "dynamic",
"key": "system_addOutputParam",
"valueType": "dynamic",
"label": "",
"editField": {
"key": true,
"valueType": true
}
},
{
"id": "result",
"type": "static",
"key": "result",
"valueType": "string",
"label": "result",
"description": "result",
"canEdit": true,
"editField": {
"key": true,
"name": true,
"description": true,
"dataType": true
}
},
{
"id": "httpRawResponse",
"type": "static",
"key": "httpRawResponse",
"valueType": "any",
"label": "原始响应",
"description": "HTTP请求的原始响应。只能接受字符串或JSON类型响应数据。"
}
]
},
{
"nodeId": "fYxwWym8flYL",
"name": "工具调用",
"intro": "通过AI模型自动选择一个或多个功能块进行调用也可以对插件进行调用。",
"avatar": "/imgs/workflow/tool.svg",
"flowNodeType": "tools",
"showStatus": true,
"position": {
"x": 933.9342354248961,
"y": 1229.3563445150553
},
"inputs": [
{
"key": "model",
"renderTypeList": [
"settingLLMModel",
"reference"
],
"label": "core.module.input.label.aiModel",
"valueType": "string",
"llmModelType": "all",
"value": "gpt-3.5-turbo"
},
{
"key": "temperature",
"renderTypeList": [
"hidden"
],
"label": "",
"value": 0,
"valueType": "number",
"min": 0,
"max": 10,
"step": 1
},
{
"key": "maxToken",
"renderTypeList": [
"hidden"
],
"label": "",
"value": 2000,
"valueType": "number",
"min": 100,
"max": 4000,
"step": 50
},
{
"key": "systemPrompt",
"renderTypeList": [
"textarea",
"reference"
],
"max": 3000,
"valueType": "string",
"label": "core.ai.Prompt",
"description": "core.app.tip.chatNodeSystemPromptTip",
"placeholder": "core.app.tip.chatNodeSystemPromptTip",
"value": "当前时间为: {{cTime}}\n你是实验室助手用户可能会询问实验室相关介绍或预约实验室。\n请选择合适的工具去帮助他们。"
},
{
"key": "history",
"renderTypeList": [
"numberInput",
"reference"
],
"valueType": "chatHistory",
"label": "core.module.input.label.chat history",
"required": true,
"min": 0,
"max": 30,
"value": 6
},
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "用户问题",
"required": true,
"value": [
"userChatInput",
"userChatInput"
]
}
],
"outputs": []
},
{
"nodeId": "JSSQtDgwmmbE",
"name": "知识库搜索",
"intro": "调用“语义检索”和“全文检索”能力,从“知识库”中查找实验室介绍和使用规则等信息。",
"avatar": "/imgs/workflow/db.png",
"flowNodeType": "datasetSearchNode",
"showStatus": true,
"position": {
"x": 447.0795498711184,
"y": 1971.5311041711186
},
"inputs": [
{
"key": "datasets",
"renderTypeList": [
"selectDataset",
"reference"
],
"label": "core.module.input.label.Select dataset",
"value": [],
"valueType": "selectDataset",
"list": [],
"required": true
},
{
"key": "similarity",
"renderTypeList": [
"selectDatasetParamsModal"
],
"label": "",
"value": 0.4,
"valueType": "number"
},
{
"key": "limit",
"renderTypeList": [
"hidden"
],
"label": "",
"value": 1500,
"valueType": "number"
},
{
"key": "searchMode",
"renderTypeList": [
"hidden"
],
"label": "",
"valueType": "string",
"value": "embedding"
},
{
"key": "usingReRank",
"renderTypeList": [
"hidden"
],
"label": "",
"valueType": "boolean",
"value": false
},
{
"key": "datasetSearchUsingExtensionQuery",
"renderTypeList": [
"hidden"
],
"label": "",
"valueType": "boolean",
"value": false
},
{
"key": "datasetSearchExtensionModel",
"renderTypeList": [
"hidden"
],
"label": "",
"valueType": "string",
"value": "gpt-3.5-turbo"
},
{
"key": "datasetSearchExtensionBg",
"renderTypeList": [
"hidden"
],
"label": "",
"valueType": "string",
"value": ""
},
{
"key": "userChatInput",
"renderTypeList": [
"reference",
"textarea"
],
"valueType": "string",
"label": "用户问题",
"required": true,
"toolDescription": "需要检索的内容"
}
],
"outputs": [
{
"id": "quoteQA",
"key": "quoteQA",
"label": "core.module.Dataset quote.label",
"description": "特殊数组格式,搜索结果为空时,返回空数组。",
"type": "static",
"valueType": "datasetQuote"
}
]
},
{
"nodeId": "IdntVQiTopHT",
"name": "工具调用终止",
"intro": "该模块需配置工具调用使用。当该模块被执行时本次工具调用将会强制结束并且不再调用AI针对工具调用结果回答问题。",
"avatar": "/imgs/workflow/toolStop.svg",
"flowNodeType": "stopTool",
"position": {
"x": 1969.73331750207,
"y": 2650.0258908119413
},
"inputs": [],
"outputs": []
}
],
"edges": [
{
"source": "40clf3",
"target": "eg5upi",
"sourceHandle": "40clf3-source-right",
"targetHandle": "eg5upi-target-left"
},
{
"source": "userChatInput",
"target": "fYxwWym8flYL",
"sourceHandle": "userChatInput-source-right",
"targetHandle": "fYxwWym8flYL-target-left"
},
{
"source": "fYxwWym8flYL",
"target": "40clf3",
"sourceHandle": "selectedTools",
"targetHandle": "selectedTools"
},
{
"source": "fYxwWym8flYL",
"target": "JSSQtDgwmmbE",
"sourceHandle": "selectedTools",
"targetHandle": "selectedTools"
},
{
"source": "40clf3",
"target": "IdntVQiTopHT",
"sourceHandle": "40clf3-source-right",
"targetHandle": "IdntVQiTopHT-target-left"
}
]
}
```
{{% /details %}}
## Laf 云函数代码
可以在 [Laf](https://laf.dev/) 中快速构建 HTTP 接口。
{{% details title="函数代码" closed="true" %}}
```ts
import cloud from '@lafjs/cloud'
const db = cloud.database()
type RequestType = {
name: string;
time?: string;
labname?: string;
action: 'post' | 'delete' | 'put' | 'get'
}
export default async function (ctx: FunctionContext) {
try {
const { action,...body } = ctx.body as RequestType
if (action === 'get') {
return await getRecord(ctx.body)
}
if (action === 'post') {
return await createRecord(ctx.body)
}
if (action === 'put') {
return await putRecord(ctx.body)
}
if (action === 'delete') {
return await removeRecord(ctx.body)
}
return {
result: "异常"
}
} catch (err) {
return {
result: "异常"
}
}
}
async function putRecord({ name, time, labname }: RequestType) {
const missData = []
if (!name) missData.push("你的姓名")
if (missData.length > 0) {
return {
result: `请提供: ${missData.join("、")}`
}
}
const { data: record } = await db.collection("LabAppointment").where({
name, status: "unStart"
}).getOne()
if (!record) {
return {
result: `${name} 还没有预约记录`
}
}
const updateWhere = {
name,
time: time || record.time,
labname: labname || record.labname
}
await db.collection("LabAppointment").where({
name, status: "unStart"
}).update(updateWhere)
return {
result: `修改预约成功。
姓名:${name}·
时间: ${updateWhere.time}
实验室名: ${updateWhere.labname}
` }
}
async function getRecord({ name }: RequestType) {
if (!name) {
return {
result: "请提供你的姓名"
}
}
const { data } = await db.collection('LabAppointment').where({ name, status: "unStart" }).getOne()
if (!data) {
return {
result: `${name} 没有预约中的记录`
}
}
return {
result: `${name} 有一条预约记录:
姓名:${data.name}
时间: ${data.time}
实验室名: ${data.labname}
`
}
}
async function removeRecord({ name }: RequestType) {
if (!name) {
return {
result: "请提供你的姓名"
}
}
const { deleted } = await db.collection('LabAppointment').where({ name, status: "unStart" }).remove()
if (deleted > 0) {
return {
result: `取消预约记录成功: ${name}`
}
}
return {
result: ` ${name} 没有预约中的记录`
}
}
async function createRecord({ name, time, labname }: RequestType) {
const missData = []
if (!name) missData.push("你的姓名")
if (!time) missData.push("需要预约的时间")
if (!labname) missData.push("实验室名名称")
if (missData.length > 0) {
return {
result: `请提供: ${missData.join("、")}`
}
}
const { data: record } = await db.collection("LabAppointment").where({
name, status: "unStart"
}).getOne()
if (record) {
return {
result: `您已经有一个预约记录了:
姓名:${record.name}
时间: ${record.time}
实验室名: ${record.labname}
每人仅能同时预约一个实验室名。
`
}
}
await db.collection("LabAppointment").add({
name, time, labname, status: "unStart"
})
return {
result: `预约成功。
姓名:${name}
时间: ${time}
实验室名: ${labname}
` }
}
```
{{% /details %}}

View File

@@ -0,0 +1,315 @@
---
title: "多轮翻译机器人"
description: "如何使用 FastGPT 构建一个多轮翻译机器人,实现连续的对话翻译功能"
icon: "translate"
draft: false
toc: true
weight: 606
---
吴恩达老师提出了一种反思翻译的大语言模型(LLM)翻译工作流程——[GitHub - andrewyng/translation-agent](https://github.com/andrewyng/translation-agent),具体工作流程如下:
1. 提示一个 LLM 将文本从 `source_language` 翻译到 `target_language`
2. 让 LLM 反思翻译结果并提出建设性的改进建议;
3. 使用这些建议来改进翻译。
这个翻译流程应该是目前比较新的一种翻译方式,利用 LLM 对自己的翻译结果进行改进来获得较好的翻译效果
项目中展示了可以利用对长文本进行分片,然后分别进行反思翻译处理,以突破 LLM 对 tokens 数量的限制,真正实现长文本一键高效率高质量翻译。
项目还通过给大模型限定国家地区,已实现更精确的翻译,如美式英语、英式英语之分;同时提出一些可能能带来更好效果的优化,如对于一些 LLM 未曾训练到的术语(或有多种翻译方式的术语)建立术语表,进一步提升翻译的精确度等等
而这一切都能通过 Fastgpt 工作流轻松实现,本文将手把手教你如何复刻吴恩达老师的 translation-agent
# 单文本块反思翻译
先从简单的开始,即不超出 LLM tokens 数量限制的单文本块翻译
## 初始翻译
第一步先让 LLM 对源文本块进行初始翻译(翻译的提示词在源项目中都有)
![](/imgs/translate1.png)
通过`文本拼接`模块引用 源语言、目标语言、源文本这三个参数,生成提示词,传给 LLM让它给出第一版的翻译
## 反思
然后让 LLM 对第一步生成的初始翻译给出修改建议,称之为 反思
![](/imgs/translate2.png)
这时的提示词接收 5 个参数,源文本、初始翻译、源语言、目标语言 以及限定词地区国家,这样 LLM 会对前面生成的翻译提出相当多的修改建议,为后续的提升翻译作准备
## 提升翻译
![](/imgs/translate3.png)
在前文生成了初始翻译以及相应的反思后,将这二者输入给第三次 LLM 翻译,这样我们就能获得一个比较高质量的翻译结果
完整的工作流如下
![](/imgs/translate4.png)
## 运行效果
由于考虑之后对这个反思翻译的复用,所以创建了一个插件,那么在下面我直接调用这个插件就能使用反思翻译,效果如下
随机挑选了一段哈利波特的文段
![](/imgs/translate5.png)
![](/imgs/translate6.png)
可以看到反思翻译后的效果还是好上不少的,其中反思的输出如下
![](/imgs/translate7.png)
# 长文反思翻译
在掌握了对短文本块的反思翻译后,我们能轻松的通过分片和循环,实现对长文本也即多文本块的反思翻译
整体的逻辑是,首先对传入文本的 tokens数量做判断如果不超过设置的 tokens 限制,那么直接调用单文本块反思翻译,如果超过设置的 tokens限制那么切割为合理的大小再分别进行对应的反思翻译处理
## 计算 tokens
![](/imgs/translate8.png)
首先,我使用了 Laf函数 模块来实现对输入文本的 tokens 的计算
laf函数的使用相当简单即开即用只需要在 laf 创建个应用,然后安装 tiktoken 依赖,导入如下代码即可
```TypeScript
const { Tiktoken } = require("tiktoken/lite");
const cl100k_base = require("tiktoken/encoders/cl100k_base.json");
interface IRequestBody {
str: string
}
interface RequestProps extends IRequestBody {
systemParams: {
appId: string,
variables: string,
histories: string,
cTime: string,
chatId: string,
responseChatItemId: string
}
}
interface IResponse {
message: string;
tokens: number;
}
export default async function (ctx: FunctionContext): Promise<IResponse> {
const { str = "" }: RequestProps = ctx.body
const encoding = new Tiktoken(
cl100k_base.bpe_ranks,
cl100k_base.special_tokens,
cl100k_base.pat_str
);
const tokens = encoding.encode(str);
encoding.free();
return {
message: 'ok',
tokens: tokens.length
};
}
```
再回到 Fastgpt点击“同步参数”再连线将源文本传入即可计算 tokens 数量
## 计算单文本块大小
![](/imgs/translate9.png)
由于不涉及第三方包,只是一些数据处理,所以直接使用 代码运行 模块处理即可
```TypeScript
function main({tokenCount, tokenLimit}){
const numChunks = Math.ceil(tokenCount / tokenLimit);
let chunkSize = Math.floor(tokenCount / numChunks);
const remainingTokens = tokenCount % tokenLimit;
if (remainingTokens > 0) {
chunkSize += Math.floor(remainingTokens / numChunks);
}
return {chunkSize};
}
```
通过上面的代码,我们就能算出不超过 token限制的合理单文本块大小是多少了
## 获得切分后源文本块
![](/imgs/translate10.png)
通过单文本块大小和源文本,我们再编写一个函数调用 langchain 的 textsplitters 包来实现文本分片,具体代码如下
```TypeScript
import cloud from '@lafjs/cloud'
import { TokenTextSplitter } from "@langchain/textsplitters";
interface IRequestBody {
text: string
chunkSize: number
}
interface RequestProps extends IRequestBody {
systemParams: {
appId: string,
variables: string,
histories: string,
cTime: string,
chatId: string,
responseChatItemId: string
}
}
interface IResponse {
output: string[];
}
export default async function (ctx: FunctionContext): Promise<IResponse>{
const { text = '', chunkSize=1000 }: RequestProps = ctx.body;
const splitter = new TokenTextSplitter({
encodingName:"gpt2",
chunkSize: Number(chunkSize),
chunkOverlap: 0,
});
const output = await splitter.splitText(text);
return {
output
}
}
```
这样我们就获得了切分好的文本,接下去的操作就类似单文本块反思翻译
## 多文本块翻译
这里应该还是不能直接调用前面的单文本块反思翻译,因为提示词中会涉及一些上下文的处理(或者可以修改下前面写好的插件,多传点参数进去)
详细的和前面类似,就是提示词进行一些替换,以及需要做一些很简单的数据处理,整体效果如下
### 多文本块初始翻译
![](/imgs/translate11.png)
### 多文本块反思
![](/imgs/translate12.png)
### 多文本块提升翻译
![](/imgs/translate13.png)
## 循环执行
长文反思翻译比较关键的一个部分,就是对多个文本块进行循环反思翻译
Fastgpt 提供了工作流线路可以返回去执行的功能,所以我们可以写一个很简单的判断函数,来判断结束或是接着执行
![](/imgs/translate14.png)
也就是通过判断当前处理的这个文本块,是否是最后一个文本块,从而判断是否需要继续执行,就这样,我们实现了长文反思翻译的效果
完整工作流如下
![](/imgs/translate15.png)
## 运行效果
首先输入全局设置
![](/imgs/translate16.png)
然后输入需要翻译的文本,这里我选择了一章哈利波特的英文原文来做翻译,其文本长度通过 openai 对 tokens 数量的判断如下
![](/imgs/translate17.png)
实际运行效果如下
![](/imgs/translate18.png)
可以看到还是能满足阅读需求的
# 进一步调优
## 提示词调优
在源项目中,给 AI 的系统提示词还是比较的简略的,我们可以通过比较完善的提示词,来督促 LLM 返回更合适的翻译,进一步提升翻译的质量
比如初始翻译中,
```TypeScript
# Role: 资深翻译专家
## Background:
你是一位经验丰富的翻译专家,精通{{source_lang}}{{target_lang}}互译,尤其擅长将{{source_lang}}文章译成流畅易懂的{{target_lang}}。你曾多次带领团队完成大型翻译项目,译文广受好评。
## Attention:
- 翻译过程中要始终坚持"信、达、雅"的原则,"达"尤为重要
- 译文要符合{{target_lang}}的表达习惯,通俗易懂,连贯流畅
- 避免使用过于文绉绉的表达和晦涩难懂的典故引用
## Constraints:
- 必须严格遵循四轮翻译流程:直译、意译、校审、定稿
- 译文要忠实原文,准确无误,不能遗漏或曲解原意
## Goals:
- 通过四轮翻译流程,{{source_lang}}原文译成高质量的{{target_lang}}译文
- 译文要准确传达原文意思,语言表达力求浅显易懂,朗朗上口
- 适度使用一些熟语俗语、流行网络用语等,增强译文的亲和力
- 在直译的基础上,提供至少2个不同风格的意译版本供选择
## Skills:
- 精通{{source_lang}} {{target_lang}}两种语言,具有扎实的语言功底和丰富的翻译经验
- 擅长将{{source_lang}}表达习惯转换为地道自然的{{target_lang}}
- 对当代{{target_lang}}语言的发展变化有敏锐洞察,善于把握语言流行趋势
## Workflow:
1. 第一轮直译:逐字逐句忠实原文,不遗漏任何信息
2. 第二轮意译:在直译的基础上用通俗流畅的{{target_lang}}意译原文,至少提供2个不同风格的版本
3. 第三轮校审:仔细审视译文,消除偏差和欠缺,使译文更加地道易懂
4. 第四轮定稿:择优选取,反复修改润色,最终定稿出一个简洁畅达、符合大众阅读习惯的译文
## OutputFormat:
- 只需要输出第四轮定稿的回答
## Suggestions:
- 直译时力求忠实原文,但不要过于拘泥逐字逐句
- 意译时在准确表达原意的基础上,用最朴实无华的{{target_lang}}来表达
- 校审环节重点关注译文是否符合{{target_lang}}表达习惯,是否通俗易懂
- 定稿时适度采用一些熟语谚语、网络流行语等,使译文更接地气- 善于利用{{target_lang}}的灵活性,用不同的表述方式展现同一内容,提高译文的可读性
```
从而返回更准确更高质量的初始翻译,后续的反思和提升翻译也可以修改更准确的提示词,如下
![](/imgs/translate19.png)
然后再让我们来看看运行效果
![](/imgs/translate20.png)
给了和之前相同的一段文本进行测试,测试效果还是比较显著的,就比如红框部分,之前的翻译如下
![](/imgs/translate21.png)
从“让你的猫头鹰给我写信”这样有失偏颇的翻译,变成“给我写信,你的猫头鹰会知道怎么找到我”这样较为准确的翻译
## 其他调优
比如限定词调优,源项目中已经做了示范,就是加上国家地区这个限定词,实测确实会有不少提升
出于 LLM 的卓越能力我们能够通过设置不同的prompt来获取不同的翻译结果也就是可以很轻松地通过设置特殊的限定词来实现特定的更精确的翻译
而对于一些超出 LLM 理解的术语等,也可以利用 Fastgpt 的知识库功能进行相应扩展,进一步完善翻译机器人的功能

View File

@@ -0,0 +1,86 @@
---
title: "如何提交应用模板"
description: "指南:如何向 FastGPT 提交应用模板"
icon: "template_submission"
draft: false
toc: true
weight: 602
---
## 什么模板可以合并
目前合并进仓库的应用模板,会在「模板市场」中全部展示给用户。
为了控制模板的质量以及避免数量过多带来的繁琐,并不是所有的模板都会被合并到开源仓库中,你可以提前 PR 与我们沟通模板的内容。
预估最后总体的数量不会很多,控制在 50 个左右,一半来自 FastGPT Team一半来自社区用户。
## 如何写一个应用模板
1. ### 跑通 FastGPT dev 环境
需要在 dev 环境下执行下面的操作。
> 可参照 [FastGPT快速开始本地开发](https://doc.fastgpt.in/docs/development/intro/)
1. ### 在 FastGPT 工作台中,创建一个应用
创建空白工作流即可。
![](/imgs/template_submission1.png)
1. ### 创建应用模板
应用模板配置以及相关资源,都会在 **projects/app/public/appMarketTemplates** 目录下。
![](/imgs/template_submission2.png)
1.**projects/app/public/appMarketTemplates** 目录下,创建一个文件夹,名称为模板对应的 id。
2. 在刚刚创建的文件夹中,再创建一个 **template.json** 文件,复制粘贴并填写如下配置:
```JSON
{
"name": "模板名",
"intro": "模板描述,会展示在模板市场的展示页",
"author": "填写你的名字",
"avatar": "模板头像,可以将图片文件放在同一个文件夹中,然后填写相应路径",
"tags": ["模板标签"], // writing(文本创作)image-generation(图片生成)web-search(联网搜索),
// roleplay(角色扮演), office-services(办公服务) 暂时分为 5 类,从中选择相应的标签
"type": "模板类别", // simple(简易应用), advanced(工作流), plugin(插件)
"workflow": { // 这个对象先不管,待会直接粘贴导出的工作流即可
"nodes": [],
"edges": [],
"chatConfig": {}
}
}
```
1. ### 完成应用编排并测试
完成应用编排后,可以点击右上角的发布。
1. ### 复制配置到 template.json
鼠标放置在左上角应用的头像和名称上,会出现对于下拉框操作,可以导出工作流配置。
导出的配置,会自动复制到剪切板,可以直接到 template.json 文件中粘贴使用,替换步骤 2 中,**workflow** 的值。
![](/imgs/template_submission3.png)
1. ### 验证模板是否加载成功
刷新页面,打开模板市场,看其是否成功加载,并点击「使用」测试其功能。
![](/imgs/template_submission4.png)
1. ### 提交 PR
如果你觉得你的模板需要提交到开源仓库,可以通过 PR 形式向我们提交。
- 写清楚模板的介绍和功能
- 配上模板运行的效果图
- 模板参数填写说明,需要在 PR 中写清楚。例如,有些模板需要去某个提供商申请 key需要附上对应的地址和教程后续我们会加入到文档中。

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,9 @@
---
weight: 500
title: "外部调用 FastGPT"
description: "外部应用通过多种方式调用 FastGPT 功能的教程"
icon: "cloud"
draft: false
images: []
---
<!-- 500 ~ 600 -->

View File

@@ -0,0 +1,97 @@
---
title: "接入飞书机器人教程"
description: "FastGPT 接入飞书机器人教程"
icon: "chat"
draft: false
toc: true
weight: 504
---
从 4.8.10 版本起FastGPT 商业版支持直接接入飞书机器人,无需额外的 API。
## 1. 申请飞书应用
开一个免费的测试企业更方便进行调试。
1. 在[飞书开放平台](https://open.feishu.cn/app)的开发者后台申请企业自建应用。
![图片](/imgs/feishu-bot-1.png)
添加一个**机器人**应用。
## 2. 在 FastGPT 新建发布渠道
在fastgpt中选择想要接入的应用在 发布渠道 页面,新建一个接入飞书机器人的发布渠道,填写好基础信息。
![图片](/imgs/feishu-bot-2.png)
## 3. 获取应用的 App ID, App Secret 两个凭证
在飞书开放平台开发者后台,刚刚创建的企业自建应用中,找到 App ID 和 App Secret填入 FastGPT 新建发布渠道的对话框里面。
![图片](/imgs/feishu-bot-3.png)
填入两个参数到 FastGPT 配置弹窗中。
![图片](/imgs/feishu-bot-4.png)
(可选)在飞书开放平台开发者后台,点击事件与回调 -> 加密策略 获取 Encrypt Key并填入飞书机器人接入的对话框里面
![图片](/imgs/feishu-bot-5.png)
Encrypt Key 用于加密飞书服务器与 FastGPT 之间通信。
建议如果使用 Https 协议,则不需要 Encrypt Key。如果使用 Http 协议通信,则建议使用 Encrypt Key
Verification Token 默认生成的这个 Token 用于校验来源。但我们使用飞书官方推荐的另一种更为安全的校验方式,因此可以忽略这个配置项。
## 4. 配置回调地址
新建好发布渠道后,点击**请求地址**,复制对应的请求地址。
在飞书控制台,点击左侧的 `事件与回调` ,点击`配置订阅方式`旁边的编辑 icon粘贴刚刚复制的请求地址到输入框中。
| | | |
| --- | --- | --- |
| ![图片](/imgs/feishu-bot-10.jpg) | ![图片](/imgs/feishu-bot-11.jpg) | ![图片](/imgs/feishu-bot-6.png) |
## 5. 配置机器人回调事件和权限
* 添加 `接收消息` 事件
`事件与回调`页面,点击`添加事件`
搜索`接收消息`,或者直接搜索 `im.message.receive_v1` ,找到`接收消息 v2.0`的时间,勾选上并点击`确认添加`
添加事件后,增加两个权限:点击对应权限,会有弹窗提示添加权限,添加上图两个权限。
| | |
| --- | --- |
| ![图片](/imgs/feishu-bot-7.png) | ![图片](/imgs/feishu-bot-8.png) |
不推荐启用上图中的两个“历史版本”,而是使用新版本的权限。
- 若开启 “读取用户发给机器人的单聊消息”, 则单聊发送给机器人的消息将被送到 FastGPT
- 若开启 “接收群聊中@机器人消息事件”, 则群聊中@机器人的消息将被送到 FastGPT
- 若开启(不推荐开启)“获取群组中所有消息”,则群聊中所有消息都将被送到 FastGPT
## 6. 配置回复消息权限
在飞书控制台,点击左侧的 `权限管理` ,搜索框中输入`发消息`,找到`以应用的身份发消息`的权限,点击开通权限。
![](/imgs/feishu-bot-13.jpg)
## 7. 发布机器人
点击飞书控制台左侧的`版本管理与发布`,即可发布机器人。
![](/imgs/feishu-bot-12.jpg)
然后就可以在工作台里找到你的机器人啦。接下来就是把机器人拉进群组,或者单独与它对话。
![图片](/imgs/feishu-bot-9.png)
## FAQ
### 发送了消息,没响应
1. 检查飞书机器人回调地址、权限等是否正确。
2. 查看 FastGPT 对话日志,是否有对应的提问记录
3. 如果有记录,飞书没回应,则是没给机器人开权限。
4. 如果没记录,则可能是应用运行报错了,可以先试试最简单的机器人。(飞书机器人无法输入全局变量、文件、图片内容)

View File

@@ -0,0 +1,8 @@
---
title: "iframe 接入"
description: "通过 iframe 嵌入 FastGPT 内容到其他网页或应用"
icon: "iframe"
draft: false
toc: true
weight: 512
---

View File

@@ -0,0 +1,106 @@
---
title: '接入微信公众号教程'
description: 'FastGPT 接入微信公众号教程'
icon: 'description'
draft: false
toc: true
weight: 506
---
从 4.8.10 版本起FastGPT 商业版支持直接接入微信公众号,无需额外的 API。
**注意⚠️: 目前只支持通过验证的公众号(服务号和订阅号都可以)**
## 1. 在 FastGPT 新建发布渠道
在 FastGPT 中选择想要接入的应用,在 *发布渠道* 页面,新建一个接入微信公众号的发布渠道,填写好基础信息。
![图片](/imgs/offiaccount-1.png)
## 2. 登录微信公众平台,获取 AppID 、 Secret和Token
### 1. https://mp.weixin.qq.com 登录微信公众平台,选择您的公众号。
**只支持通过验证的公众号,未通过验证的公众号暂不支持。**
开发者可以从这个链接申请微信公众号的测试号进行测试,测试号可以正常使用,但不能配置 AES Key
![图片](/imgs/offiaccount-2.png)
### 2. 把3个参数填入 FastGPT 配置弹窗中。
![图片](/imgs/offiaccount-3.png)
## 3. 在 IP 白名单中加入 FastGPT 的 IP
![图片](/imgs/offiaccount-4.png)
私有部署的用户可自行查阅自己的 IP 地址。
海外版用户cloud.tryfastgpt.ai)可以填写下面的 IP 白名单:
```
34.87.20.17
35.247.161.35
34.87.51.146
34.87.110.152
35.247.163.68
34.126.163.205
34.87.20.189
34.87.102.86
35.240.227.100
35.198.192.104
34.143.149.171
34.87.152.33
34.124.237.188
35.197.149.75
34.87.44.74
34.124.189.116
34.87.79.202
34.87.173.252
34.143.240.160
34.87.180.104
34.142.157.52
```
国内版用户fastgpt.cn)可以填写下面的 IP 白名单:
```
47.97.59.172
121.43.108.48
121.41.75.88
121.41.178.7
121.40.65.187
121.196.235.183
120.55.195.90
120.55.193.112
120.26.229.115
112.124.41.79
101.37.205.32
47.98.190.173
```
## 4. 获取AES Key选择加密方式
![图片](/imgs/offiaccount-5.png)
![图片](/imgs/offiaccount-6.png)
1. 随机生成AESKey填入 FastGPT 配置弹窗中。
2. 选择加密方式为安全模式。
## 5. 获取 URL
1. 在FastGPT确认创建获取URL。
![图片](/imgs/offiaccount-7.png)
2. 填入微信公众平台的 URL 处,然后提交保存
![图片](/imgs/offiaccount-8.png)
## 6. 启用服务器配置(如已自动启用,请忽略)
![图片](/imgs/offiaccount-9.png)
## 7. 开始使用
现在用户向公众号发消息,消息则会被转发到 FastGPT通过公众号返回对话结果。

View File

@@ -4,14 +4,14 @@ description: "FastGPT 对接 chatgpt-on-wechat"
icon: "chat"
draft: false
toc: true
weight: 504
weight: 509
---
# 1 分钟对接 chatgpt-on-wechat
[chatgpt-on-wechat GitHub 地址](https://github.com/zhayujie/chatgpt-on-wechat)
由于 FastGPT 的 API 接口和 OpenAI 的规范一致,可以无需变更原来的应用即可使用 FastGPT 上编排好的应用。API 使用可参考 [这篇文章](/docs/course/openapi/)。编排示例,可参考 [高级编排介绍](/docs/workflow/intro)
由于 FastGPT 的 API 接口和 OpenAI 的规范一致,可以无需变更原来的应用即可使用 FastGPT 上编排好的应用。API 使用可参考 [这篇文章](/docs/use-cases/external-integration/openapi/)。编排示例,可参考 [高级编排介绍](/docs/workflow/intro)
## 1. 获取 OpenAPI 密钥

View File

@@ -0,0 +1,40 @@
---
title: "通过 API 访问应用"
description: "通过 API 访问 FastGPT 应用"
icon: "model_training"
draft: false
toc: true
weight: 502
---
在 FastGPT 中,你可以为每一个应用创建多个 API 密钥,用于访问应用的 API 接口。每个密钥仅能访问一个应用。完整的接口可以[查看应用对话接口](/docs/development/openapi/chat)。
## 获取 API 密钥
依次选择应用 -> 「API访问」然后点击「API 密钥」来创建密钥。
{{% alert context="warning" %}}
密钥需要自己保管好,一旦关闭就无法再复制密钥,只能创建新密钥再复制。
{{% /alert %}}
![](/imgs/fastgpt-api1.jpg)
{{% alert icon="🍅" context="success" %}}
Tips: 安全起见,你可以设置一个额度或者过期时间,放置 key 被滥用。
{{% /alert %}}
## 替换三方应用的变量
```bash
OPENAI_API_BASE_URL: https://api.fastgpt.in/api (改成自己部署的域名)
OPENAI_API_KEY = 上一步获取到的密钥
```
**[ChatGPT Next Web](https://github.com/Yidadaa/ChatGPT-Next-Web) 示例:**
![](/imgs/chatgptnext.png)
**[ChatGPT Web](https://github.com/Chanzhaoyu/chatgpt-web) 示例:**
![](/imgs/chatgptweb.png)

View File

@@ -4,7 +4,7 @@ description: "FastGPT 接入微信和企业微信 "
icon: "chat"
draft: false
toc: true
weight: 506
weight: 510
---
# FastGPT 三分钟接入微信/企业微信

View File

@@ -1,60 +0,0 @@
---
title: "使用 Gapier 快速导入Agent工具"
description: "FastGPT 使用 Gapier 快速导入Agent工具"
icon: "build"
draft: false
toc: true
weight: 501
---
FastGPT V4.7版本加入了工具调用,可以兼容 GPTs 的 Actions。这意味着你可以直接导入兼容 GPTs 的 Agent 工具。
Gapier 是一个在线 GPTs Actions工具提供了50多种现成工具并且每天有免费额度进行测试方便用户试用官方地址为[https://gapier.com/](https://gapier.com/)。
![](/imgs/gapierToolResult1.webp)
现在,我们开始把 Gapier 的工具导入到 FastGPT 中。
## 1. 创建插件
| Step1 | Step2 | Step3 |
| --- | --- | --- |
| ![](/imgs/gapierTool1.png) | ![](/imgs/gapierTool2.png) | 登录[Gapier](https://gapier.com/) 复制相关参数 <br> ![](/imgs/gapierTool3.png) |
| Step4 | Step5 | Step6 |
| 自定义请求头: Authorization<br>请求值: Bearer 复制的key <br> ![](/imgs/gapierTool4.png) | ![](/imgs/gapierTool5.png) | ![](/imgs/gapierTool6.png) |
创建完后,如果需要变更,无需重新创建,只需要修改对应参数即可,会自动做差值比较更新。
![](/imgs/gapierTool7.png)
## 2. 应用绑定工具
### 简易模式
| Step1 | Step2 |
| --- | --- | --- |
| ![](/imgs/gapierTool8.png) | ![](/imgs/gapierTool9.webp) |
| Step3 | Step4 |
| ![](/imgs/gapierTool10.webp) | ![](/imgs/gapierTool11.png) |
### 高级编排
| Step1 | Step2 |
| --- | --- | --- |
| ![](/imgs/gapierTool12.webp) | ![](/imgs/gapierTool13.webp) |
| Step3 | Step4 |
| ![](/imgs/gapierTool14.webp) | ![](/imgs/gapierTool15.webp) |
![](/imgs/gapierTool16.webp)
## 3. 工具调用说明
### 不同模型的区别
不同模型调用工具采用不同的方法,有些模型支持 toolChoice 和 functionCall 效果会更好。不支持这两种方式的模型通过提示词调用但是效果不是很好并且为了保证顺利调用FastGPT内置的提示词仅支持每次调用一个工具。
具体哪些模型支持 functionCall 可以官网查看当然也需要OneAPI支持同时需要调整模型配置文件中的对应字段详细看配置字段说明
线上版用户,可以在模型选择时,看到是否支持函数调用的标识。
![](/imgs/gapierTool17.webp)