mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-19 10:07:24 +00:00
refactor: agent call (#5572)
* feat: Add relevant functions related to agent invocation, including plan parsing, state management and tool invocation * Refactor agent call logic and utilities - Simplified the `runAgentCall` function by removing unnecessary complexity and restructuring the flow for better readability and maintainability. - Introduced helper functions to create tools from tool nodes and to prepare agent messages, enhancing modularity. - Removed the `utils.ts` file as its functions were integrated into the main logic, streamlining the codebase. - Updated the dispatch logic in `index.ts` to utilize the new helper functions and improve clarity. - Adjusted the handling of interactive modes and tool calls to ensure proper response formatting and error handling. * refactor: clean up the processing logic of the interactive mode and remove the unused tool creation functions * feat: add relevant constants for proxy configuration and update the proxy call logic * refactor: remove unused configuration variables from workflow properties * refactor: remove unused configuration variables from dispatchRunAgents props * fix: build error * refactor: update FlowNodeTypeEnum values and consolidate utility functions * refactor: simplify conditional checks in tool call and reasoning handlers * feat: add default agent prompt for improved response handling * refactor: rename directory with agent->tool, agentCall->agnet * refactor: rename dispatchRunAgents to dispatchRunAgent for consistency * refactor: rename toolCall to tools for consistency in FlowNodeTypeEnum * refactor: rename agents to toolCall for consistency in nodeTypes mapping * refactor: remove unused runtimeEdges parameter from dispatchRunAgent * refactor: update runAgentCall and dispatchRunAgent to use structured requestProps and workflowProps * refactor: streamline requestProps and handleToolResponse in runAgentCall and dispatchRunAgent * refactor: restructure RunAgentCallProps and update requestProps to requestParams for clarity * refactor: enhance interactiveEntryToolParams handling in runAgentCall for improved response management * refactor: flatten RunAgentCallProps structure and update dispatchRunAgent to use direct properties * fix: correct initialization of interactiveResponse in runAgentCall
This commit is contained in:
@@ -168,6 +168,11 @@ export enum NodeInputKeyEnum {
|
||||
aiChatResponseFormat = 'aiChatResponseFormat',
|
||||
aiChatJsonSchema = 'aiChatJsonSchema',
|
||||
|
||||
// agent
|
||||
subAgentConfig = 'subConfig',
|
||||
planAgentConfig = 'planConfig',
|
||||
modelAgentConfig = 'modelConfig',
|
||||
|
||||
// dataset
|
||||
datasetSelectList = 'datasets',
|
||||
datasetSimilarity = 'similarity',
|
||||
|
@@ -137,7 +137,8 @@ export enum FlowNodeTypeEnum {
|
||||
pluginInput = 'pluginInput',
|
||||
pluginOutput = 'pluginOutput',
|
||||
queryExtension = 'cfr',
|
||||
agent = 'tools',
|
||||
agent = 'agent',
|
||||
toolCall = 'tools',
|
||||
stopTool = 'stopTool',
|
||||
toolParams = 'toolParams',
|
||||
lafModule = 'lafModule',
|
||||
|
410
packages/service/core/workflow/dispatch/ai/agent/agentCall.ts
Normal file
410
packages/service/core/workflow/dispatch/ai/agent/agentCall.ts
Normal file
@@ -0,0 +1,410 @@
|
||||
import type {
|
||||
ChatCompletionToolMessageParam,
|
||||
ChatCompletionMessageParam,
|
||||
ChatCompletionTool,
|
||||
CompletionFinishReason
|
||||
} from '@fastgpt/global/core/ai/type';
|
||||
import { responseWriteController } from '../../../../../common/response';
|
||||
import { SseResponseEventEnum } from '@fastgpt/global/core/workflow/runtime/constants';
|
||||
import { textAdaptGptResponse } from '@fastgpt/global/core/workflow/runtime/utils';
|
||||
import { ChatCompletionRequestMessageRoleEnum } from '@fastgpt/global/core/ai/constants';
|
||||
import type { ToolNodeItemType } from './type';
|
||||
import type { DispatchFlowResponse, WorkflowResponseType } from '../../type';
|
||||
import { GPTMessages2Chats } from '@fastgpt/global/core/chat/adapt';
|
||||
import type { AIChatItemType, AIChatItemValueItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { computedMaxToken } from '../../../../ai/utils';
|
||||
import { sliceStrStartEnd } from '@fastgpt/global/common/string/tools';
|
||||
import type { WorkflowInteractiveResponseType } from '@fastgpt/global/core/workflow/template/system/interactive/type';
|
||||
import { ChatItemValueTypeEnum } from '@fastgpt/global/core/chat/constants';
|
||||
import { getErrText } from '@fastgpt/global/common/error/utils';
|
||||
import { createLLMResponse } from '../../../../ai/llm/request';
|
||||
import { toolValueTypeList, valueTypeJsonSchemaMap } from '@fastgpt/global/core/workflow/constants';
|
||||
import type { RunAgentResponse } from './type';
|
||||
import type { ExternalProviderType } from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import type { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
|
||||
import type { NextApiResponse } from 'next/types';
|
||||
|
||||
type ToolRunResponseType = {
|
||||
toolRunResponse?: DispatchFlowResponse;
|
||||
toolMsgParams: ChatCompletionToolMessageParam;
|
||||
}[];
|
||||
|
||||
type RunAgentCallProps = {
|
||||
messages: ChatCompletionMessageParam[];
|
||||
agentModel: LLMModelItemType;
|
||||
toolNodes: ToolNodeItemType[];
|
||||
maxRunAgentTimes: number;
|
||||
res?: NextApiResponse;
|
||||
workflowStreamResponse?: WorkflowResponseType;
|
||||
interactiveEntryToolParams?: WorkflowInteractiveResponseType['toolParams'];
|
||||
requestParams: {
|
||||
temperature: number;
|
||||
maxToken: number;
|
||||
externalProvider: ExternalProviderType;
|
||||
requestOrigin?: string;
|
||||
stream?: boolean;
|
||||
retainDatasetCite?: boolean;
|
||||
useVision?: boolean;
|
||||
top_p?: number;
|
||||
response_format?: {
|
||||
type?: string;
|
||||
json_schema?: string;
|
||||
};
|
||||
stop?: string;
|
||||
reasoning?: boolean;
|
||||
};
|
||||
handleToolResponse: ({ args, nodeId }: { args: string; nodeId: string }) => Promise<string>;
|
||||
};
|
||||
|
||||
export const runAgentCall = async (props: RunAgentCallProps): Promise<RunAgentResponse> => {
|
||||
const { requestParams, handleToolResponse, ...workflowProps } = props;
|
||||
const {
|
||||
messages,
|
||||
agentModel,
|
||||
toolNodes,
|
||||
interactiveEntryToolParams,
|
||||
maxRunAgentTimes,
|
||||
res,
|
||||
workflowStreamResponse
|
||||
} = workflowProps;
|
||||
const { stream, maxToken, externalProvider, reasoning } = requestParams;
|
||||
|
||||
const toolNodesMap = new Map<string, ToolNodeItemType>(
|
||||
toolNodes.map((item) => [item.nodeId, item])
|
||||
);
|
||||
const tools: ChatCompletionTool[] = [
|
||||
// ...createBuiltinTools(),
|
||||
...createToolFromToolNodes(toolNodes)
|
||||
];
|
||||
|
||||
const max_tokens = computedMaxToken({
|
||||
model: agentModel,
|
||||
maxToken: maxToken,
|
||||
min: 100
|
||||
});
|
||||
|
||||
const write = res ? responseWriteController({ res, readStream: stream }) : undefined;
|
||||
|
||||
// 统计信息
|
||||
const allToolsRunResponse: ToolRunResponseType = [];
|
||||
const assistantResponses: AIChatItemValueItemType[] = [];
|
||||
const dispatchFlowResponse: DispatchFlowResponse[] = [];
|
||||
let agentWorkflowInteractiveResponse: WorkflowInteractiveResponseType | undefined;
|
||||
let allCompleteMessages: ChatCompletionMessageParam[] = messages;
|
||||
let finish_reason: CompletionFinishReason = null;
|
||||
let currRunAgentTimes: number = maxRunAgentTimes;
|
||||
let inputTokens: number = 0;
|
||||
let outputTokens: number = 0;
|
||||
let runTimes: number = 0;
|
||||
|
||||
if (interactiveEntryToolParams) {
|
||||
// TODO: mock data, wait for ask interactive node implemented
|
||||
const interactiveResponse = ' ';
|
||||
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.toolResponse,
|
||||
data: {
|
||||
tool: {
|
||||
id: interactiveEntryToolParams.toolCallId,
|
||||
toolName: '',
|
||||
toolAvatar: '',
|
||||
params: '',
|
||||
response: sliceStrStartEnd(interactiveResponse, 5000, 5000)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// const hasStopSignal = toolRunResponse.flowResponses?.some((item) => item.toolStop);
|
||||
// const workflowInteractiveResponse = toolRunResponse.workflowInteractiveResponse;
|
||||
|
||||
allCompleteMessages.push(
|
||||
...interactiveEntryToolParams.memoryMessages.map((item) =>
|
||||
item.role === 'tool' && item.tool_call_id === interactiveEntryToolParams?.toolCallId
|
||||
? { ...item, content: interactiveResponse }
|
||||
: item
|
||||
)
|
||||
);
|
||||
|
||||
// 累积 interactive 工具的结果
|
||||
// dispatchFlowResponse.push(toolRunResponse);
|
||||
// assistantResponses.push(...toolRunResponse.assistantResponses);
|
||||
// runTimes += toolRunResponse.runTimes;
|
||||
|
||||
// if (hasStopSignal || workflowInteractiveResponse) {
|
||||
// if (workflowInteractiveResponse) {
|
||||
// agentWorkflowInteractiveResponse = {
|
||||
// ...workflowInteractiveResponse,
|
||||
// toolParams: {
|
||||
// entryNodeIds: workflowInteractiveResponse.entryNodeIds,
|
||||
// toolCallId: interactiveEntryToolParams?.toolCallId || '',
|
||||
// memoryMessages: interactiveEntryToolParams?.memoryMessages || []
|
||||
// }
|
||||
// };
|
||||
// }
|
||||
// }
|
||||
|
||||
currRunAgentTimes--;
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------
|
||||
|
||||
while (currRunAgentTimes > 0) {
|
||||
const currToolsRunResponse: ToolRunResponseType = [];
|
||||
|
||||
// TODO: Context agent compression
|
||||
|
||||
let {
|
||||
reasoningText: reasoningContent,
|
||||
answerText: answer,
|
||||
toolCalls = [],
|
||||
finish_reason: currFinishReason,
|
||||
usage,
|
||||
getEmptyResponseTip,
|
||||
assistantMessage,
|
||||
completeMessages
|
||||
} = await createLLMResponse({
|
||||
body: {
|
||||
model: agentModel.model,
|
||||
messages: allCompleteMessages,
|
||||
tool_choice: 'auto',
|
||||
toolCallMode: agentModel.toolChoice ? 'toolChoice' : 'prompt',
|
||||
tools,
|
||||
parallel_tool_calls: true,
|
||||
max_tokens,
|
||||
...requestParams
|
||||
},
|
||||
userKey: externalProvider.openaiAccount,
|
||||
isAborted: () => res?.closed,
|
||||
onReasoning({ text }) {
|
||||
if (!reasoning) return;
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
reasoning_content: text
|
||||
})
|
||||
});
|
||||
},
|
||||
onStreaming({ text }) {
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
text
|
||||
})
|
||||
});
|
||||
},
|
||||
onToolCall({ call }) {
|
||||
const toolNode = toolNodesMap.get(call.function.name);
|
||||
if (!toolNode) return;
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.toolCall,
|
||||
data: {
|
||||
tool: {
|
||||
id: call.id,
|
||||
toolName: toolNode?.name || call.function.name,
|
||||
toolAvatar: toolNode?.avatar || '',
|
||||
functionName: call.function.name,
|
||||
params: call.function.arguments ?? '',
|
||||
response: ''
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
if (!answer && !reasoningContent && !toolCalls.length) {
|
||||
return Promise.reject(getEmptyResponseTip());
|
||||
}
|
||||
|
||||
for await (const tool of toolCalls) {
|
||||
const toolNode = toolNodesMap.get(tool.function?.name);
|
||||
let toolRunResponse, stringToolResponse;
|
||||
|
||||
try {
|
||||
if (!toolNode) continue;
|
||||
stringToolResponse = handleToolResponse({
|
||||
args: tool.function.arguments,
|
||||
nodeId: toolNode.nodeId
|
||||
});
|
||||
} catch (error) {
|
||||
stringToolResponse = getErrText(error);
|
||||
}
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.toolResponse,
|
||||
data: {
|
||||
tool: {
|
||||
id: tool.id,
|
||||
toolName: '',
|
||||
toolAvatar: '',
|
||||
params: '',
|
||||
response: sliceStrStartEnd(stringToolResponse || '', 5000, 5000)
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
currToolsRunResponse.push({
|
||||
toolRunResponse,
|
||||
toolMsgParams: {
|
||||
tool_call_id: tool.id,
|
||||
role: ChatCompletionRequestMessageRoleEnum.Tool,
|
||||
name: tool.function.name,
|
||||
content: sliceStrStartEnd(stringToolResponse || '', 5000, 5000)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
const currFlatToolsResponseData = currToolsRunResponse
|
||||
.flatMap((item) => item.toolRunResponse ?? [])
|
||||
.filter(Boolean);
|
||||
|
||||
// 累积工具调用的响应结果
|
||||
allToolsRunResponse.push(...currToolsRunResponse);
|
||||
dispatchFlowResponse.push(...currFlatToolsResponseData);
|
||||
inputTokens += usage.inputTokens;
|
||||
outputTokens += usage.outputTokens;
|
||||
finish_reason = currFinishReason;
|
||||
|
||||
// handle sub apps
|
||||
if (toolCalls.length > 0) {
|
||||
allCompleteMessages = [
|
||||
...completeMessages,
|
||||
...currToolsRunResponse.map((item) => item?.toolMsgParams)
|
||||
];
|
||||
|
||||
const agentNodeAssistant = GPTMessages2Chats({
|
||||
messages: [...assistantMessage, ...currToolsRunResponse.map((item) => item?.toolMsgParams)],
|
||||
getToolInfo: (id) => {
|
||||
const toolNode = toolNodesMap.get(id);
|
||||
return {
|
||||
name: toolNode?.name || '',
|
||||
avatar: toolNode?.avatar || ''
|
||||
};
|
||||
}
|
||||
})[0] as AIChatItemType;
|
||||
const agentChildAssistants = currFlatToolsResponseData
|
||||
.map((item) => item.assistantResponses)
|
||||
.flat()
|
||||
.filter((item) => item.type !== ChatItemValueTypeEnum.interactive); // 交互节点留着下次记录
|
||||
|
||||
assistantResponses.push(...agentNodeAssistant.value, ...agentChildAssistants);
|
||||
|
||||
runTimes += currFlatToolsResponseData.reduce((sum, { runTimes }) => sum + runTimes, 0);
|
||||
|
||||
const hasStopSignal = currFlatToolsResponseData.some((item) =>
|
||||
item.flowResponses?.some((flow) => flow.toolStop)
|
||||
);
|
||||
// Check interactive response(Only 1 interaction is reserved)
|
||||
const workflowInteractiveResponseItem = currToolsRunResponse.find(
|
||||
(item) => item.toolRunResponse?.workflowInteractiveResponse
|
||||
);
|
||||
|
||||
if (hasStopSignal || workflowInteractiveResponseItem) {
|
||||
// Get interactive tool data
|
||||
const workflowInteractiveResponse =
|
||||
workflowInteractiveResponseItem?.toolRunResponse?.workflowInteractiveResponse;
|
||||
|
||||
// Flashback traverses completeMessages, intercepting messages that know the first user
|
||||
const firstUserIndex = allCompleteMessages.findLastIndex((item) => item.role === 'user');
|
||||
const newMessages = allCompleteMessages.slice(firstUserIndex + 1);
|
||||
|
||||
if (workflowInteractiveResponse) {
|
||||
agentWorkflowInteractiveResponse = {
|
||||
...workflowInteractiveResponse,
|
||||
toolParams: {
|
||||
entryNodeIds: workflowInteractiveResponse.entryNodeIds,
|
||||
toolCallId: workflowInteractiveResponseItem?.toolMsgParams.tool_call_id,
|
||||
memoryMessages: newMessages
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
currRunAgentTimes--;
|
||||
} else {
|
||||
const agentNodeAssistant = GPTMessages2Chats({
|
||||
messages: assistantMessage
|
||||
})[0] as AIChatItemType;
|
||||
assistantResponses.push(...agentNodeAssistant.value);
|
||||
runTimes++;
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
dispatchFlowResponse,
|
||||
agentCallInputTokens: inputTokens,
|
||||
agentCallOutputTokens: outputTokens,
|
||||
completeMessages: allCompleteMessages,
|
||||
assistantResponses,
|
||||
agentWorkflowInteractiveResponse,
|
||||
runTimes,
|
||||
finish_reason
|
||||
};
|
||||
};
|
||||
|
||||
const createToolFromToolNodes = (toolNodes: ToolNodeItemType[]): ChatCompletionTool[] => {
|
||||
return toolNodes.map((item: ToolNodeItemType) => {
|
||||
if (item.jsonSchema) {
|
||||
return {
|
||||
type: 'function',
|
||||
function: {
|
||||
name: item.nodeId,
|
||||
description: item.intro || item.name,
|
||||
parameters: item.jsonSchema
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
const properties: Record<string, any> = {};
|
||||
item.toolParams.forEach((param) => {
|
||||
const jsonSchema = param.valueType
|
||||
? valueTypeJsonSchemaMap[param.valueType] || toolValueTypeList[0].jsonSchema
|
||||
: toolValueTypeList[0].jsonSchema;
|
||||
|
||||
properties[param.key] = {
|
||||
...jsonSchema,
|
||||
description: param.toolDescription || '',
|
||||
enum: param.enum?.split('\n').filter(Boolean) || undefined
|
||||
};
|
||||
});
|
||||
|
||||
return {
|
||||
type: 'function',
|
||||
function: {
|
||||
name: item.nodeId,
|
||||
description: item.toolDescription || item.intro || item.name,
|
||||
parameters: {
|
||||
type: 'object',
|
||||
properties,
|
||||
required: item.toolParams.filter((param) => param.required).map((param) => param.key)
|
||||
}
|
||||
}
|
||||
};
|
||||
});
|
||||
};
|
||||
|
||||
// const createBuiltinTools = (): ChatCompletionTool[] => {
|
||||
// return [
|
||||
// {
|
||||
// type: 'function',
|
||||
// function: {
|
||||
// name: 'plan_agent',
|
||||
// description: '',
|
||||
// parameters: {
|
||||
// type: 'object',
|
||||
// properties: {
|
||||
// instruction: {
|
||||
// type: 'string',
|
||||
// description: ''
|
||||
// }
|
||||
// },
|
||||
// required: ['instruction']
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// ];
|
||||
// };
|
@@ -1,14 +1,25 @@
|
||||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||||
export const getTopAgentDefaultPrompt = () => {
|
||||
return `你是一位Supervisor Agent,具备以下核心能力:
|
||||
|
||||
export const getMultiplePrompt = (obj: {
|
||||
fileCount: number;
|
||||
imgCount: number;
|
||||
question: string;
|
||||
}) => {
|
||||
const prompt = `Number of session file inputs:
|
||||
Document:{{fileCount}}
|
||||
Image:{{imgCount}}
|
||||
------
|
||||
{{question}}`;
|
||||
return replaceVariable(prompt, obj);
|
||||
## 核心能力
|
||||
1. **计划制定与管理**:根据用户需求制定详细的执行计划,并实时跟踪和调整计划进度
|
||||
2. **工具调用编排**:可以调用各种工具来完成特定任务,支持并行和串行工具调用
|
||||
3. **上下文理解**:能够理解对话历史、文档内容和当前状态
|
||||
4. **自主决策**:根据当前情况和计划进度做出最优决策
|
||||
|
||||
## 工作流程
|
||||
1. **需求分析**:深入理解用户需求,识别关键目标和约束条件
|
||||
2. **计划制定**:使用 plan_agent 工具制定详细的执行计划
|
||||
3. **工具编排**:根据计划选择和调用合适的工具
|
||||
4. **结果处理**:分析工具返回结果,判断是否满足预期
|
||||
5. **计划调整**:根据执行结果动态调整计划
|
||||
6. **最终输出**:给出完整、准确的回答
|
||||
|
||||
## 特殊指令
|
||||
- 对于复杂任务,必须先使用 plan_agent 制定计划
|
||||
- 在执行过程中如需调整计划,再次调用 plan_agent
|
||||
- 始终保持计划的可见性和可追踪性
|
||||
- 遇到错误时要有容错和重试机制
|
||||
|
||||
请始终保持专业、准确、有条理的回答风格,确保用户能够清楚了解执行进度和结果。`;
|
||||
};
|
||||
|
@@ -2,15 +2,14 @@ import { NodeInputKeyEnum, NodeOutputKeyEnum } from '@fastgpt/global/core/workfl
|
||||
import { DispatchNodeResponseKeyEnum } from '@fastgpt/global/core/workflow/runtime/constants';
|
||||
import type {
|
||||
ChatDispatchProps,
|
||||
DispatchNodeResultType,
|
||||
RuntimeNodeItemType
|
||||
DispatchNodeResultType
|
||||
} from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import { getLLMModel } from '../../../../ai/model';
|
||||
import { filterToolNodeIdByEdges, getNodeErrResponse, getHistories } from '../../utils';
|
||||
import { runToolCall } from './toolCall';
|
||||
import { type DispatchToolModuleProps, type ToolNodeItemType } from './type';
|
||||
import { runAgentCall } from './agentCall';
|
||||
import { type DispatchAgentModuleProps } from './type';
|
||||
import { type ChatItemType, type UserChatItemValueItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { ChatItemValueTypeEnum, ChatRoleEnum } from '@fastgpt/global/core/chat/constants';
|
||||
import { ChatRoleEnum } from '@fastgpt/global/core/chat/constants';
|
||||
import {
|
||||
GPTMessages2Chats,
|
||||
chatValue2RuntimePrompt,
|
||||
@@ -21,22 +20,27 @@ import {
|
||||
import { formatModelChars2Points } from '../../../../../support/wallet/usage/utils';
|
||||
import { getHistoryPreview } from '@fastgpt/global/core/chat/utils';
|
||||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||||
import { getMultiplePrompt } from './constants';
|
||||
import { filterToolResponseToPreview } from './utils';
|
||||
import {
|
||||
filterToolResponseToPreview,
|
||||
formatToolResponse,
|
||||
getToolNodesByIds,
|
||||
initToolNodes,
|
||||
toolCallMessagesAdapt
|
||||
} from '../utils';
|
||||
import { getFileContentFromLinks, getHistoryFileLinks } from '../../tools/readFiles';
|
||||
import { parseUrlToFileType } from '@fastgpt/global/common/file/tools';
|
||||
import { FlowNodeTypeEnum } from '@fastgpt/global/core/workflow/node/constant';
|
||||
import { getDocumentQuotePrompt } from '@fastgpt/global/core/ai/prompt/AIChat';
|
||||
import { postTextCensor } from '../../../../chat/postTextCensor';
|
||||
import type { FlowNodeInputItemType } from '@fastgpt/global/core/workflow/type/io';
|
||||
import type { McpToolDataType } from '@fastgpt/global/core/app/mcpTools/type';
|
||||
import type { JSONSchemaInputType } from '@fastgpt/global/core/app/jsonschema';
|
||||
import { getTopAgentDefaultPrompt } from './constants';
|
||||
import { runWorkflow } from '../..';
|
||||
import json5 from 'json5';
|
||||
|
||||
type Response = DispatchNodeResultType<{
|
||||
[NodeOutputKeyEnum.answerText]: string;
|
||||
}>;
|
||||
|
||||
export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<Response> => {
|
||||
export const dispatchRunAgent = async (props: DispatchAgentModuleProps): Promise<Response> => {
|
||||
let {
|
||||
node: { nodeId, name, isEntry, version, inputs },
|
||||
runtimeNodes,
|
||||
@@ -49,6 +53,9 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
runningUserInfo,
|
||||
externalProvider,
|
||||
usageId,
|
||||
stream,
|
||||
res,
|
||||
workflowStreamResponse,
|
||||
params: {
|
||||
model,
|
||||
systemPrompt,
|
||||
@@ -56,52 +63,31 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
history = 6,
|
||||
fileUrlList: fileLinks,
|
||||
aiChatVision,
|
||||
aiChatReasoning
|
||||
aiChatReasoning,
|
||||
temperature,
|
||||
maxToken,
|
||||
aiChatTopP,
|
||||
aiChatResponseFormat,
|
||||
aiChatJsonSchema,
|
||||
aiChatStopSign
|
||||
}
|
||||
} = props;
|
||||
|
||||
try {
|
||||
const toolModel = getLLMModel(model);
|
||||
const useVision = aiChatVision && toolModel.vision;
|
||||
const agentModel = getLLMModel(model);
|
||||
const useVision = aiChatVision && agentModel.vision;
|
||||
const chatHistories = getHistories(history, histories);
|
||||
|
||||
props.params.aiChatVision = aiChatVision && toolModel.vision;
|
||||
props.params.aiChatReasoning = aiChatReasoning && toolModel.reasoning;
|
||||
props.params.aiChatVision = aiChatVision && agentModel.vision;
|
||||
props.params.aiChatReasoning = aiChatReasoning && agentModel.reasoning;
|
||||
|
||||
const fileUrlInput = inputs.find((item) => item.key === NodeInputKeyEnum.fileUrlList);
|
||||
if (!fileUrlInput || !fileUrlInput.value || fileUrlInput.value.length === 0) {
|
||||
fileLinks = undefined;
|
||||
}
|
||||
|
||||
const toolNodeIds = filterToolNodeIdByEdges({ nodeId, edges: runtimeEdges });
|
||||
|
||||
// Gets the module to which the tool is connected
|
||||
const toolNodes = toolNodeIds
|
||||
.map((nodeId) => {
|
||||
const tool = runtimeNodes.find((item) => item.nodeId === nodeId);
|
||||
return tool;
|
||||
})
|
||||
.filter(Boolean)
|
||||
.map<ToolNodeItemType>((tool) => {
|
||||
const toolParams: FlowNodeInputItemType[] = [];
|
||||
// Raw json schema(MCP tool)
|
||||
let jsonSchema: JSONSchemaInputType | undefined = undefined;
|
||||
tool?.inputs.forEach((input) => {
|
||||
if (input.toolDescription) {
|
||||
toolParams.push(input);
|
||||
}
|
||||
|
||||
if (input.key === NodeInputKeyEnum.toolData || input.key === 'toolData') {
|
||||
const value = input.value as McpToolDataType;
|
||||
jsonSchema = value.inputSchema;
|
||||
}
|
||||
});
|
||||
|
||||
return {
|
||||
...(tool as RuntimeNodeItemType),
|
||||
toolParams,
|
||||
jsonSchema
|
||||
};
|
||||
});
|
||||
const toolNodes = getToolNodesByIds({ toolNodeIds, runtimeNodes });
|
||||
|
||||
// Check interactive entry
|
||||
props.node.isEntry = false;
|
||||
@@ -122,53 +108,24 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
usageId
|
||||
});
|
||||
|
||||
const concatenateSystemPrompt = [
|
||||
toolModel.defaultSystemChatPrompt,
|
||||
const messages: ChatItemType[] = prepareAgentMessages({
|
||||
systemPromptParams: {
|
||||
systemPrompt,
|
||||
documentQuoteText
|
||||
? replaceVariable(getDocumentQuotePrompt(version), {
|
||||
quote: documentQuoteText
|
||||
})
|
||||
: ''
|
||||
]
|
||||
.filter(Boolean)
|
||||
.join('\n\n===---===---===\n\n');
|
||||
|
||||
const messages: ChatItemType[] = (() => {
|
||||
const value: ChatItemType[] = [
|
||||
...getSystemPrompt_ChatItemType(concatenateSystemPrompt),
|
||||
// Add file input prompt to histories
|
||||
...chatHistories.map((item) => {
|
||||
if (item.obj === ChatRoleEnum.Human) {
|
||||
return {
|
||||
...item,
|
||||
value: toolCallMessagesAdapt({
|
||||
userInput: item.value,
|
||||
skip: !hasReadFilesTool
|
||||
})
|
||||
};
|
||||
documentQuoteText,
|
||||
version
|
||||
},
|
||||
conversationParams: {
|
||||
chatHistories,
|
||||
hasReadFilesTool,
|
||||
userChatInput,
|
||||
userFiles,
|
||||
lastInteractive,
|
||||
isEntry: isEntry ?? false
|
||||
}
|
||||
return item;
|
||||
}),
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: toolCallMessagesAdapt({
|
||||
skip: !hasReadFilesTool,
|
||||
userInput: runtimePrompt2ChatsValue({
|
||||
text: userChatInput,
|
||||
files: userFiles
|
||||
})
|
||||
})
|
||||
}
|
||||
];
|
||||
if (lastInteractive && isEntry) {
|
||||
return value.slice(0, -2);
|
||||
}
|
||||
return value;
|
||||
})();
|
||||
});
|
||||
|
||||
// censor model and system key
|
||||
if (toolModel.censor && !externalProvider.openaiAccount?.key) {
|
||||
if (agentModel.censor && !externalProvider.openaiAccount?.key) {
|
||||
await postTextCensor({
|
||||
text: `${systemPrompt}
|
||||
${userChatInput}
|
||||
@@ -176,41 +133,66 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
});
|
||||
}
|
||||
|
||||
const {
|
||||
toolWorkflowInteractiveResponse,
|
||||
dispatchFlowResponse, // tool flow response
|
||||
toolCallInputTokens,
|
||||
toolCallOutputTokens,
|
||||
completeMessages = [], // The actual message sent to AI(just save text)
|
||||
assistantResponses = [], // FastGPT system store assistant.value response
|
||||
runTimes,
|
||||
finish_reason
|
||||
} = await (async () => {
|
||||
const adaptMessages = chats2GPTMessages({
|
||||
messages,
|
||||
reserveId: false
|
||||
// reserveTool: !!toolModel.toolChoice
|
||||
});
|
||||
const requestParams = {
|
||||
runtimeNodes,
|
||||
runtimeEdges,
|
||||
toolNodes,
|
||||
toolModel,
|
||||
messages: adaptMessages,
|
||||
interactiveEntryToolParams: lastInteractive?.toolParams
|
||||
temperature,
|
||||
maxToken,
|
||||
stream,
|
||||
requestOrigin,
|
||||
externalProvider,
|
||||
retainDatasetCite: true,
|
||||
useVision: aiChatVision,
|
||||
top_p: aiChatTopP,
|
||||
response_format: {
|
||||
type: aiChatResponseFormat,
|
||||
json_schema: aiChatJsonSchema
|
||||
},
|
||||
stop: aiChatStopSign,
|
||||
reasoning: aiChatReasoning
|
||||
};
|
||||
|
||||
return runToolCall({
|
||||
...props,
|
||||
...requestParams,
|
||||
maxRunToolTimes: 100
|
||||
});
|
||||
const {
|
||||
agentWorkflowInteractiveResponse,
|
||||
dispatchFlowResponse,
|
||||
agentCallInputTokens,
|
||||
agentCallOutputTokens,
|
||||
completeMessages = [],
|
||||
assistantResponses = [],
|
||||
runTimes,
|
||||
finish_reason
|
||||
} = await runAgentCall({
|
||||
messages: adaptMessages,
|
||||
toolNodes,
|
||||
agentModel,
|
||||
maxRunAgentTimes: 100,
|
||||
res,
|
||||
workflowStreamResponse,
|
||||
interactiveEntryToolParams: lastInteractive?.toolParams,
|
||||
requestParams,
|
||||
handleToolResponse: async ({ args, nodeId }) => {
|
||||
const startParams = (() => {
|
||||
try {
|
||||
return json5.parse(args);
|
||||
} catch {
|
||||
return {};
|
||||
}
|
||||
})();
|
||||
initToolNodes(runtimeNodes, [nodeId], startParams);
|
||||
const toolRunResponse = await runWorkflow({
|
||||
...props,
|
||||
isToolCall: true
|
||||
});
|
||||
return formatToolResponse(toolRunResponse.toolResponses);
|
||||
}
|
||||
});
|
||||
|
||||
const { totalPoints: modelTotalPoints, modelName } = formatModelChars2Points({
|
||||
model,
|
||||
inputTokens: toolCallInputTokens,
|
||||
outputTokens: toolCallOutputTokens
|
||||
inputTokens: agentCallInputTokens,
|
||||
outputTokens: agentCallOutputTokens
|
||||
});
|
||||
const modelUsage = externalProvider.openaiAccount?.key ? 0 : modelTotalPoints;
|
||||
|
||||
@@ -234,8 +216,8 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
[DispatchNodeResponseKeyEnum.nodeResponse]: {
|
||||
// 展示的积分消耗
|
||||
totalPoints: totalPointsUsage,
|
||||
toolCallInputTokens: toolCallInputTokens,
|
||||
toolCallOutputTokens: toolCallOutputTokens,
|
||||
toolCallInputTokens: agentCallInputTokens,
|
||||
toolCallOutputTokens: agentCallOutputTokens,
|
||||
childTotalPoints: toolTotalPoints,
|
||||
model: modelName,
|
||||
query: userChatInput,
|
||||
@@ -254,13 +236,13 @@ export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<
|
||||
moduleName: name,
|
||||
model: modelName,
|
||||
totalPoints: modelUsage,
|
||||
inputTokens: toolCallInputTokens,
|
||||
outputTokens: toolCallOutputTokens
|
||||
inputTokens: agentCallInputTokens,
|
||||
outputTokens: agentCallOutputTokens
|
||||
},
|
||||
// 工具的消耗
|
||||
...toolUsages
|
||||
],
|
||||
[DispatchNodeResponseKeyEnum.interactive]: toolWorkflowInteractiveResponse
|
||||
[DispatchNodeResponseKeyEnum.interactive]: agentWorkflowInteractiveResponse
|
||||
};
|
||||
} catch (error) {
|
||||
return getNodeErrResponse({ error });
|
||||
@@ -324,51 +306,72 @@ const getMultiInput = async ({
|
||||
};
|
||||
};
|
||||
|
||||
/*
|
||||
Tool call, auth add file prompt to question。
|
||||
Guide the LLM to call tool.
|
||||
*/
|
||||
const toolCallMessagesAdapt = ({
|
||||
userInput,
|
||||
skip
|
||||
const prepareAgentMessages = ({
|
||||
systemPromptParams,
|
||||
conversationParams
|
||||
}: {
|
||||
userInput: UserChatItemValueItemType[];
|
||||
skip?: boolean;
|
||||
}): UserChatItemValueItemType[] => {
|
||||
if (skip) return userInput;
|
||||
systemPromptParams: {
|
||||
systemPrompt: string;
|
||||
documentQuoteText: string;
|
||||
version?: string;
|
||||
};
|
||||
conversationParams: {
|
||||
chatHistories: ChatItemType[];
|
||||
hasReadFilesTool: boolean;
|
||||
userChatInput: string;
|
||||
userFiles: UserChatItemValueItemType['file'][];
|
||||
isEntry: boolean;
|
||||
lastInteractive?: any;
|
||||
};
|
||||
}): ChatItemType[] => {
|
||||
const { systemPrompt, documentQuoteText, version } = systemPromptParams;
|
||||
const { chatHistories, hasReadFilesTool, userChatInput, userFiles, lastInteractive, isEntry } =
|
||||
conversationParams;
|
||||
|
||||
const files = userInput.filter((item) => item.type === 'file');
|
||||
const agentPrompt = systemPrompt || getTopAgentDefaultPrompt();
|
||||
|
||||
if (files.length > 0) {
|
||||
const filesCount = files.filter((file) => file.file?.type === 'file').length;
|
||||
const imgCount = files.filter((file) => file.file?.type === 'image').length;
|
||||
const finalSystemPrompt = [
|
||||
agentPrompt,
|
||||
documentQuoteText
|
||||
? replaceVariable(getDocumentQuotePrompt(version || ''), {
|
||||
quote: documentQuoteText
|
||||
})
|
||||
: ''
|
||||
]
|
||||
.filter(Boolean)
|
||||
.join('\n\n===---===---===\n\n');
|
||||
|
||||
if (userInput.some((item) => item.type === 'text')) {
|
||||
return userInput.map((item) => {
|
||||
if (item.type === 'text') {
|
||||
const text = item.text?.content || '';
|
||||
const systemMessages = getSystemPrompt_ChatItemType(finalSystemPrompt);
|
||||
|
||||
const processedHistories = chatHistories.map((item) => {
|
||||
if (item.obj !== ChatRoleEnum.Human) return item;
|
||||
|
||||
return {
|
||||
...item,
|
||||
text: {
|
||||
content: getMultiplePrompt({ fileCount: filesCount, imgCount, question: text })
|
||||
}
|
||||
value: toolCallMessagesAdapt({
|
||||
userInput: item.value,
|
||||
skip: !hasReadFilesTool
|
||||
})
|
||||
};
|
||||
}
|
||||
return item;
|
||||
});
|
||||
}
|
||||
|
||||
// Every input is a file
|
||||
return [
|
||||
{
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: getMultiplePrompt({ fileCount: filesCount, imgCount, question: '' })
|
||||
}
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
return userInput;
|
||||
const currentUserMessage: ChatItemType = {
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: toolCallMessagesAdapt({
|
||||
skip: !hasReadFilesTool,
|
||||
userInput: runtimePrompt2ChatsValue({
|
||||
text: userChatInput,
|
||||
files: userFiles
|
||||
})
|
||||
})
|
||||
};
|
||||
|
||||
const allMessages: ChatItemType[] = [
|
||||
...systemMessages,
|
||||
...processedHistories,
|
||||
currentUserMessage
|
||||
];
|
||||
|
||||
// 交互模式下且为入口节点时,移除最后两条消息
|
||||
return lastInteractive && isEntry ? allMessages.slice(0, -2) : allMessages;
|
||||
};
|
||||
|
@@ -6,7 +6,7 @@ import type { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import { NodeOutputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import type {
|
||||
ModuleDispatchProps,
|
||||
DispatchNodeResponseType
|
||||
DispatchNodeResultType
|
||||
} from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import type { RuntimeNodeItemType } from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import { ChatNodeUsageType } from '@fastgpt/global/support/wallet/bill/type';
|
||||
@@ -18,7 +18,7 @@ import type { WorkflowInteractiveResponseType } from '@fastgpt/global/core/workf
|
||||
import type { LLMModelItemType } from '@fastgpt/global/core/ai/model';
|
||||
import type { JSONSchemaInputType } from '@fastgpt/global/core/app/jsonschema';
|
||||
|
||||
export type DispatchToolModuleProps = ModuleDispatchProps<{
|
||||
export type DispatchAgentModuleProps = ModuleDispatchProps<{
|
||||
[NodeInputKeyEnum.history]?: ChatItemType[];
|
||||
[NodeInputKeyEnum.userChatInput]: string;
|
||||
|
||||
@@ -33,23 +33,23 @@ export type DispatchToolModuleProps = ModuleDispatchProps<{
|
||||
[NodeInputKeyEnum.aiChatStopSign]?: string;
|
||||
[NodeInputKeyEnum.aiChatResponseFormat]?: string;
|
||||
[NodeInputKeyEnum.aiChatJsonSchema]?: string;
|
||||
}> & {
|
||||
messages: ChatCompletionMessageParam[];
|
||||
toolNodes: ToolNodeItemType[];
|
||||
toolModel: LLMModelItemType;
|
||||
interactiveEntryToolParams?: WorkflowInteractiveResponseType['toolParams'];
|
||||
};
|
||||
|
||||
export type RunToolResponse = {
|
||||
[NodeInputKeyEnum.subAgentConfig]?: Record<string, any>;
|
||||
[NodeInputKeyEnum.planAgentConfig]?: Record<string, any>;
|
||||
[NodeInputKeyEnum.modelAgentConfig]?: Record<string, any>;
|
||||
}>;
|
||||
|
||||
export type RunAgentResponse = {
|
||||
dispatchFlowResponse: DispatchFlowResponse[];
|
||||
toolCallInputTokens: number;
|
||||
toolCallOutputTokens: number;
|
||||
agentCallInputTokens: number;
|
||||
agentCallOutputTokens: number;
|
||||
completeMessages?: ChatCompletionMessageParam[];
|
||||
assistantResponses?: AIChatItemValueItemType[];
|
||||
toolWorkflowInteractiveResponse?: WorkflowInteractiveResponseType;
|
||||
agentWorkflowInteractiveResponse?: WorkflowInteractiveResponseType;
|
||||
[DispatchNodeResponseKeyEnum.runTimes]: number;
|
||||
finish_reason?: CompletionFinishReason;
|
||||
};
|
||||
|
||||
export type ToolNodeItemType = RuntimeNodeItemType & {
|
||||
toolParams: RuntimeNodeItemType['inputs'];
|
||||
jsonSchema?: JSONSchemaInputType;
|
||||
|
@@ -1,70 +0,0 @@
|
||||
import { sliceStrStartEnd } from '@fastgpt/global/common/string/tools';
|
||||
import { ChatItemValueTypeEnum } from '@fastgpt/global/core/chat/constants';
|
||||
import { type AIChatItemValueItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { type FlowNodeInputItemType } from '@fastgpt/global/core/workflow/type/io';
|
||||
import { type RuntimeEdgeItemType } from '@fastgpt/global/core/workflow/type/edge';
|
||||
import { type RuntimeNodeItemType } from '@fastgpt/global/core/workflow/runtime/type';
|
||||
|
||||
export const updateToolInputValue = ({
|
||||
params,
|
||||
inputs
|
||||
}: {
|
||||
params: Record<string, any>;
|
||||
inputs: FlowNodeInputItemType[];
|
||||
}) => {
|
||||
return inputs.map((input) => ({
|
||||
...input,
|
||||
value: params[input.key] ?? input.value
|
||||
}));
|
||||
};
|
||||
|
||||
export const filterToolResponseToPreview = (response: AIChatItemValueItemType[]) => {
|
||||
return response.map((item) => {
|
||||
if (item.type === ChatItemValueTypeEnum.tool) {
|
||||
const formatTools = item.tools?.map((tool) => {
|
||||
return {
|
||||
...tool,
|
||||
response: sliceStrStartEnd(tool.response, 500, 500)
|
||||
};
|
||||
});
|
||||
return {
|
||||
...item,
|
||||
tools: formatTools
|
||||
};
|
||||
}
|
||||
|
||||
return item;
|
||||
});
|
||||
};
|
||||
|
||||
export const formatToolResponse = (toolResponses: any) => {
|
||||
if (typeof toolResponses === 'object') {
|
||||
return JSON.stringify(toolResponses, null, 2);
|
||||
}
|
||||
|
||||
return toolResponses ? String(toolResponses) : 'none';
|
||||
};
|
||||
|
||||
// 在原参上改变值,不修改原对象,tool workflow 中,使用的还是原对象
|
||||
export const initToolCallEdges = (edges: RuntimeEdgeItemType[], entryNodeIds: string[]) => {
|
||||
edges.forEach((edge) => {
|
||||
if (entryNodeIds.includes(edge.target)) {
|
||||
edge.status = 'active';
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
export const initToolNodes = (
|
||||
nodes: RuntimeNodeItemType[],
|
||||
entryNodeIds: string[],
|
||||
startParams?: Record<string, any>
|
||||
) => {
|
||||
nodes.forEach((node) => {
|
||||
if (entryNodeIds.includes(node.nodeId)) {
|
||||
node.isEntry = true;
|
||||
if (startParams) {
|
||||
node.inputs = updateToolInputValue({ params: startParams, inputs: node.inputs });
|
||||
}
|
||||
}
|
||||
});
|
||||
};
|
14
packages/service/core/workflow/dispatch/ai/tool/constants.ts
Normal file
14
packages/service/core/workflow/dispatch/ai/tool/constants.ts
Normal file
@@ -0,0 +1,14 @@
|
||||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||||
|
||||
export const getMultiplePrompt = (obj: {
|
||||
fileCount: number;
|
||||
imgCount: number;
|
||||
question: string;
|
||||
}) => {
|
||||
const prompt = `Number of session file inputs:
|
||||
Document:{{fileCount}}
|
||||
Image:{{imgCount}}
|
||||
------
|
||||
{{question}}`;
|
||||
return replaceVariable(prompt, obj);
|
||||
};
|
287
packages/service/core/workflow/dispatch/ai/tool/index.ts
Normal file
287
packages/service/core/workflow/dispatch/ai/tool/index.ts
Normal file
@@ -0,0 +1,287 @@
|
||||
import { NodeInputKeyEnum, NodeOutputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import { DispatchNodeResponseKeyEnum } from '@fastgpt/global/core/workflow/runtime/constants';
|
||||
import type {
|
||||
ChatDispatchProps,
|
||||
DispatchNodeResultType
|
||||
} from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import { getLLMModel } from '../../../../ai/model';
|
||||
import { filterToolNodeIdByEdges, getNodeErrResponse, getHistories } from '../../utils';
|
||||
import { runToolCall } from './toolCall';
|
||||
import type { DispatchToolModuleProps } from './type';
|
||||
import type { ChatItemType, UserChatItemValueItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { ChatRoleEnum } from '@fastgpt/global/core/chat/constants';
|
||||
import {
|
||||
GPTMessages2Chats,
|
||||
chatValue2RuntimePrompt,
|
||||
chats2GPTMessages,
|
||||
getSystemPrompt_ChatItemType,
|
||||
runtimePrompt2ChatsValue
|
||||
} from '@fastgpt/global/core/chat/adapt';
|
||||
import { formatModelChars2Points } from '../../../../../support/wallet/usage/utils';
|
||||
import { getHistoryPreview } from '@fastgpt/global/core/chat/utils';
|
||||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||||
import { filterToolResponseToPreview, toolCallMessagesAdapt, getToolNodesByIds } from '../utils';
|
||||
import { getFileContentFromLinks, getHistoryFileLinks } from '../../tools/readFiles';
|
||||
import { parseUrlToFileType } from '@fastgpt/global/common/file/tools';
|
||||
import { FlowNodeTypeEnum } from '@fastgpt/global/core/workflow/node/constant';
|
||||
import { getDocumentQuotePrompt } from '@fastgpt/global/core/ai/prompt/AIChat';
|
||||
import { postTextCensor } from '../../../../chat/postTextCensor';
|
||||
|
||||
type Response = DispatchNodeResultType<{
|
||||
[NodeOutputKeyEnum.answerText]: string;
|
||||
}>;
|
||||
|
||||
export const dispatchRunTools = async (props: DispatchToolModuleProps): Promise<Response> => {
|
||||
let {
|
||||
node: { nodeId, name, isEntry, version, inputs },
|
||||
runtimeNodes,
|
||||
runtimeEdges,
|
||||
histories,
|
||||
query,
|
||||
requestOrigin,
|
||||
chatConfig,
|
||||
lastInteractive,
|
||||
runningUserInfo,
|
||||
externalProvider,
|
||||
params: {
|
||||
model,
|
||||
systemPrompt,
|
||||
userChatInput,
|
||||
history = 6,
|
||||
fileUrlList: fileLinks,
|
||||
aiChatVision,
|
||||
aiChatReasoning
|
||||
}
|
||||
} = props;
|
||||
|
||||
try {
|
||||
const toolModel = getLLMModel(model);
|
||||
const useVision = aiChatVision && toolModel.vision;
|
||||
const chatHistories = getHistories(history, histories);
|
||||
|
||||
props.params.aiChatVision = aiChatVision && toolModel.vision;
|
||||
props.params.aiChatReasoning = aiChatReasoning && toolModel.reasoning;
|
||||
const fileUrlInput = inputs.find((item) => item.key === NodeInputKeyEnum.fileUrlList);
|
||||
if (!fileUrlInput || !fileUrlInput.value || fileUrlInput.value.length === 0) {
|
||||
fileLinks = undefined;
|
||||
}
|
||||
|
||||
const toolNodeIds = filterToolNodeIdByEdges({ nodeId, edges: runtimeEdges });
|
||||
const toolNodes = getToolNodesByIds({ toolNodeIds, runtimeNodes });
|
||||
|
||||
// Check interactive entry
|
||||
props.node.isEntry = false;
|
||||
const hasReadFilesTool = toolNodes.some(
|
||||
(item) => item.flowNodeType === FlowNodeTypeEnum.readFiles
|
||||
);
|
||||
|
||||
const globalFiles = chatValue2RuntimePrompt(query).files;
|
||||
const { documentQuoteText, userFiles } = await getMultiInput({
|
||||
runningUserInfo,
|
||||
histories: chatHistories,
|
||||
requestOrigin,
|
||||
maxFiles: chatConfig?.fileSelectConfig?.maxFiles || 20,
|
||||
customPdfParse: chatConfig?.fileSelectConfig?.customPdfParse,
|
||||
fileLinks,
|
||||
inputFiles: globalFiles,
|
||||
hasReadFilesTool
|
||||
});
|
||||
|
||||
const concatenateSystemPrompt = [
|
||||
toolModel.defaultSystemChatPrompt,
|
||||
systemPrompt,
|
||||
documentQuoteText
|
||||
? replaceVariable(getDocumentQuotePrompt(version), {
|
||||
quote: documentQuoteText
|
||||
})
|
||||
: ''
|
||||
]
|
||||
.filter(Boolean)
|
||||
.join('\n\n===---===---===\n\n');
|
||||
|
||||
const messages: ChatItemType[] = (() => {
|
||||
const value: ChatItemType[] = [
|
||||
...getSystemPrompt_ChatItemType(concatenateSystemPrompt),
|
||||
// Add file input prompt to histories
|
||||
...chatHistories.map((item) => {
|
||||
if (item.obj === ChatRoleEnum.Human) {
|
||||
return {
|
||||
...item,
|
||||
value: toolCallMessagesAdapt({
|
||||
userInput: item.value,
|
||||
skip: !hasReadFilesTool
|
||||
})
|
||||
};
|
||||
}
|
||||
return item;
|
||||
}),
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: toolCallMessagesAdapt({
|
||||
skip: !hasReadFilesTool,
|
||||
userInput: runtimePrompt2ChatsValue({
|
||||
text: userChatInput,
|
||||
files: userFiles
|
||||
})
|
||||
})
|
||||
}
|
||||
];
|
||||
if (lastInteractive && isEntry) {
|
||||
return value.slice(0, -2);
|
||||
}
|
||||
return value;
|
||||
})();
|
||||
|
||||
// censor model and system key
|
||||
if (toolModel.censor && !externalProvider.openaiAccount?.key) {
|
||||
await postTextCensor({
|
||||
text: `${systemPrompt}
|
||||
${userChatInput}
|
||||
`
|
||||
});
|
||||
}
|
||||
|
||||
const {
|
||||
toolWorkflowInteractiveResponse,
|
||||
dispatchFlowResponse, // tool flow response
|
||||
toolCallInputTokens,
|
||||
toolCallOutputTokens,
|
||||
completeMessages = [], // The actual message sent to AI(just save text)
|
||||
assistantResponses = [], // FastGPT system store assistant.value response
|
||||
runTimes,
|
||||
finish_reason
|
||||
} = await (async () => {
|
||||
const adaptMessages = chats2GPTMessages({
|
||||
messages,
|
||||
reserveId: false
|
||||
// reserveTool: !!toolModel.toolChoice
|
||||
});
|
||||
const requestParams = {
|
||||
runtimeNodes,
|
||||
runtimeEdges,
|
||||
toolNodes,
|
||||
toolModel,
|
||||
messages: adaptMessages,
|
||||
interactiveEntryToolParams: lastInteractive?.toolParams
|
||||
};
|
||||
|
||||
return runToolCall({
|
||||
...props,
|
||||
...requestParams,
|
||||
maxRunToolTimes: 100
|
||||
});
|
||||
})();
|
||||
|
||||
const { totalPoints: modelTotalPoints, modelName } = formatModelChars2Points({
|
||||
model,
|
||||
inputTokens: toolCallInputTokens,
|
||||
outputTokens: toolCallOutputTokens
|
||||
});
|
||||
const modelUsage = externalProvider.openaiAccount?.key ? 0 : modelTotalPoints;
|
||||
|
||||
const toolUsages = dispatchFlowResponse.map((item) => item.flowUsages).flat();
|
||||
const toolTotalPoints = toolUsages.reduce((sum, item) => sum + item.totalPoints, 0);
|
||||
|
||||
// concat tool usage
|
||||
const totalPointsUsage = modelUsage + toolTotalPoints;
|
||||
|
||||
const previewAssistantResponses = filterToolResponseToPreview(assistantResponses);
|
||||
|
||||
return {
|
||||
data: {
|
||||
[NodeOutputKeyEnum.answerText]: previewAssistantResponses
|
||||
.filter((item) => item.text?.content)
|
||||
.map((item) => item.text?.content || '')
|
||||
.join('')
|
||||
},
|
||||
[DispatchNodeResponseKeyEnum.runTimes]: runTimes,
|
||||
[DispatchNodeResponseKeyEnum.assistantResponses]: previewAssistantResponses,
|
||||
[DispatchNodeResponseKeyEnum.nodeResponse]: {
|
||||
// 展示的积分消耗
|
||||
totalPoints: totalPointsUsage,
|
||||
toolCallInputTokens: toolCallInputTokens,
|
||||
toolCallOutputTokens: toolCallOutputTokens,
|
||||
childTotalPoints: toolTotalPoints,
|
||||
model: modelName,
|
||||
query: userChatInput,
|
||||
historyPreview: getHistoryPreview(
|
||||
GPTMessages2Chats({ messages: completeMessages, reserveTool: false }),
|
||||
10000,
|
||||
useVision
|
||||
),
|
||||
toolDetail: dispatchFlowResponse.map((item) => item.flowResponses).flat(),
|
||||
mergeSignId: nodeId,
|
||||
finishReason: finish_reason
|
||||
},
|
||||
[DispatchNodeResponseKeyEnum.nodeDispatchUsages]: [
|
||||
// 模型本身的积分消耗
|
||||
{
|
||||
moduleName: name,
|
||||
model: modelName,
|
||||
totalPoints: modelUsage,
|
||||
inputTokens: toolCallInputTokens,
|
||||
outputTokens: toolCallOutputTokens
|
||||
},
|
||||
// 工具的消耗
|
||||
...toolUsages
|
||||
],
|
||||
[DispatchNodeResponseKeyEnum.interactive]: toolWorkflowInteractiveResponse
|
||||
};
|
||||
} catch (error) {
|
||||
return getNodeErrResponse({ error });
|
||||
}
|
||||
};
|
||||
|
||||
const getMultiInput = async ({
|
||||
runningUserInfo,
|
||||
histories,
|
||||
fileLinks,
|
||||
requestOrigin,
|
||||
maxFiles,
|
||||
customPdfParse,
|
||||
inputFiles,
|
||||
hasReadFilesTool
|
||||
}: {
|
||||
runningUserInfo: ChatDispatchProps['runningUserInfo'];
|
||||
histories: ChatItemType[];
|
||||
fileLinks?: string[];
|
||||
requestOrigin?: string;
|
||||
maxFiles: number;
|
||||
customPdfParse?: boolean;
|
||||
inputFiles: UserChatItemValueItemType['file'][];
|
||||
hasReadFilesTool: boolean;
|
||||
}) => {
|
||||
// Not file quote
|
||||
if (!fileLinks || hasReadFilesTool) {
|
||||
return {
|
||||
documentQuoteText: '',
|
||||
userFiles: inputFiles
|
||||
};
|
||||
}
|
||||
|
||||
const filesFromHistories = getHistoryFileLinks(histories);
|
||||
const urls = [...fileLinks, ...filesFromHistories];
|
||||
|
||||
if (urls.length === 0) {
|
||||
return {
|
||||
documentQuoteText: '',
|
||||
userFiles: []
|
||||
};
|
||||
}
|
||||
|
||||
// Get files from histories
|
||||
const { text } = await getFileContentFromLinks({
|
||||
// Concat fileUrlList and filesFromHistories; remove not supported files
|
||||
urls,
|
||||
requestOrigin,
|
||||
maxFiles,
|
||||
customPdfParse,
|
||||
teamId: runningUserInfo.teamId,
|
||||
tmbId: runningUserInfo.tmbId
|
||||
});
|
||||
|
||||
return {
|
||||
documentQuoteText: text,
|
||||
userFiles: fileLinks.map((url) => parseUrlToFileType(url)).filter(Boolean)
|
||||
};
|
||||
};
|
@@ -14,7 +14,7 @@ import json5 from 'json5';
|
||||
import type { DispatchFlowResponse } from '../../type';
|
||||
import { GPTMessages2Chats } from '@fastgpt/global/core/chat/adapt';
|
||||
import type { AIChatItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { formatToolResponse, initToolCallEdges, initToolNodes } from './utils';
|
||||
import { formatToolResponse, initToolCallEdges, initToolNodes } from '../utils';
|
||||
import { computedMaxToken } from '../../../../ai/utils';
|
||||
import { sliceStrStartEnd } from '@fastgpt/global/common/string/tools';
|
||||
import type { WorkflowInteractiveResponseType } from '@fastgpt/global/core/workflow/template/system/interactive/type';
|
||||
@@ -328,7 +328,7 @@ export const runToolCall = async (
|
||||
},
|
||||
onToolCall({ call }) {
|
||||
const toolNode = toolNodesMap.get(call.function.name);
|
||||
if (toolNode) {
|
||||
if (!toolNode) return;
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.toolCall,
|
||||
data: {
|
||||
@@ -342,7 +342,6 @@ export const runToolCall = async (
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
},
|
||||
onToolParam({ tool, params }) {
|
||||
workflowStreamResponse?.({
|
56
packages/service/core/workflow/dispatch/ai/tool/type.d.ts
vendored
Normal file
56
packages/service/core/workflow/dispatch/ai/tool/type.d.ts
vendored
Normal file
@@ -0,0 +1,56 @@
|
||||
import type {
|
||||
ChatCompletionMessageParam,
|
||||
CompletionFinishReason
|
||||
} from '@fastgpt/global/core/ai/type';
|
||||
import type { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import { NodeOutputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import type {
|
||||
ModuleDispatchProps,
|
||||
DispatchNodeResponseType
|
||||
} from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import type { RuntimeNodeItemType } from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import { ChatNodeUsageType } from '@fastgpt/global/support/wallet/bill/type';
|
||||
import type { DispatchFlowResponse } from '../../type';
|
||||
import type { AIChatItemValueItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { ChatItemValueItemType } from '@fastgpt/global/core/chat/type';
|
||||
import type { DispatchNodeResponseKeyEnum } from '@fastgpt/global/core/workflow/runtime/constants';
|
||||
import type { WorkflowInteractiveResponseType } from '@fastgpt/global/core/workflow/template/system/interactive/type';
|
||||
import type { LLMModelItemType } from '@fastgpt/global/core/ai/model';
|
||||
import type { JSONSchemaInputType } from '@fastgpt/global/core/app/jsonschema';
|
||||
|
||||
export type DispatchToolModuleProps = ModuleDispatchProps<{
|
||||
[NodeInputKeyEnum.history]?: ChatItemType[];
|
||||
[NodeInputKeyEnum.userChatInput]: string;
|
||||
|
||||
[NodeInputKeyEnum.fileUrlList]?: string[];
|
||||
[NodeInputKeyEnum.aiModel]: string;
|
||||
[NodeInputKeyEnum.aiSystemPrompt]: string;
|
||||
[NodeInputKeyEnum.aiChatTemperature]: number;
|
||||
[NodeInputKeyEnum.aiChatMaxToken]: number;
|
||||
[NodeInputKeyEnum.aiChatVision]?: boolean;
|
||||
[NodeInputKeyEnum.aiChatReasoning]?: boolean;
|
||||
[NodeInputKeyEnum.aiChatTopP]?: number;
|
||||
[NodeInputKeyEnum.aiChatStopSign]?: string;
|
||||
[NodeInputKeyEnum.aiChatResponseFormat]?: string;
|
||||
[NodeInputKeyEnum.aiChatJsonSchema]?: string;
|
||||
}> & {
|
||||
messages: ChatCompletionMessageParam[];
|
||||
toolNodes: ToolNodeItemType[];
|
||||
toolModel: LLMModelItemType;
|
||||
interactiveEntryToolParams?: WorkflowInteractiveResponseType['toolParams'];
|
||||
};
|
||||
|
||||
export type RunToolResponse = {
|
||||
dispatchFlowResponse: DispatchFlowResponse[];
|
||||
toolCallInputTokens: number;
|
||||
toolCallOutputTokens: number;
|
||||
completeMessages?: ChatCompletionMessageParam[];
|
||||
assistantResponses?: AIChatItemValueItemType[];
|
||||
toolWorkflowInteractiveResponse?: WorkflowInteractiveResponseType;
|
||||
[DispatchNodeResponseKeyEnum.runTimes]: number;
|
||||
finish_reason?: CompletionFinishReason;
|
||||
};
|
||||
export type ToolNodeItemType = RuntimeNodeItemType & {
|
||||
toolParams: RuntimeNodeItemType['inputs'];
|
||||
jsonSchema?: JSONSchemaInputType;
|
||||
};
|
161
packages/service/core/workflow/dispatch/ai/utils.ts
Normal file
161
packages/service/core/workflow/dispatch/ai/utils.ts
Normal file
@@ -0,0 +1,161 @@
|
||||
import { sliceStrStartEnd } from '@fastgpt/global/common/string/tools';
|
||||
import { ChatItemValueTypeEnum } from '@fastgpt/global/core/chat/constants';
|
||||
import type {
|
||||
AIChatItemValueItemType,
|
||||
UserChatItemValueItemType
|
||||
} from '@fastgpt/global/core/chat/type';
|
||||
import type { FlowNodeInputItemType } from '@fastgpt/global/core/workflow/type/io';
|
||||
import type { RuntimeEdgeItemType } from '@fastgpt/global/core/workflow/type/edge';
|
||||
import type { RuntimeNodeItemType } from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import type { McpToolDataType } from '@fastgpt/global/core/app/mcpTools/type';
|
||||
import type { JSONSchemaInputType } from '@fastgpt/global/core/app/jsonschema';
|
||||
import { getMultiplePrompt } from './tool/constants';
|
||||
import type { ToolNodeItemType } from './tool/type';
|
||||
|
||||
export const updateToolInputValue = ({
|
||||
params,
|
||||
inputs
|
||||
}: {
|
||||
params: Record<string, any>;
|
||||
inputs: FlowNodeInputItemType[];
|
||||
}) => {
|
||||
return inputs.map((input) => ({
|
||||
...input,
|
||||
value: params[input.key] ?? input.value
|
||||
}));
|
||||
};
|
||||
|
||||
export const filterToolResponseToPreview = (response: AIChatItemValueItemType[]) => {
|
||||
return response.map((item) => {
|
||||
if (item.type === ChatItemValueTypeEnum.tool) {
|
||||
const formatTools = item.tools?.map((tool) => {
|
||||
return {
|
||||
...tool,
|
||||
response: sliceStrStartEnd(tool.response, 500, 500)
|
||||
};
|
||||
});
|
||||
return {
|
||||
...item,
|
||||
tools: formatTools
|
||||
};
|
||||
}
|
||||
|
||||
return item;
|
||||
});
|
||||
};
|
||||
|
||||
export const formatToolResponse = (toolResponses: any) => {
|
||||
if (typeof toolResponses === 'object') {
|
||||
return JSON.stringify(toolResponses, null, 2);
|
||||
}
|
||||
|
||||
return toolResponses ? String(toolResponses) : 'none';
|
||||
};
|
||||
|
||||
// 在原参上改变值,不修改原对象,tool workflow 中,使用的还是原对象
|
||||
export const initToolCallEdges = (edges: RuntimeEdgeItemType[], entryNodeIds: string[]) => {
|
||||
edges.forEach((edge) => {
|
||||
if (entryNodeIds.includes(edge.target)) {
|
||||
edge.status = 'active';
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
export const initToolNodes = (
|
||||
nodes: RuntimeNodeItemType[],
|
||||
entryNodeIds: string[],
|
||||
startParams?: Record<string, any>
|
||||
) => {
|
||||
nodes.forEach((node) => {
|
||||
if (entryNodeIds.includes(node.nodeId)) {
|
||||
node.isEntry = true;
|
||||
if (startParams) {
|
||||
node.inputs = updateToolInputValue({ params: startParams, inputs: node.inputs });
|
||||
}
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
/*
|
||||
Tool call, auth add file prompt to question。
|
||||
Guide the LLM to call tool.
|
||||
*/
|
||||
export const toolCallMessagesAdapt = ({
|
||||
userInput,
|
||||
skip
|
||||
}: {
|
||||
userInput: UserChatItemValueItemType[];
|
||||
skip?: boolean;
|
||||
}): UserChatItemValueItemType[] => {
|
||||
if (skip) return userInput;
|
||||
|
||||
const files = userInput.filter((item) => item.type === 'file');
|
||||
|
||||
if (files.length > 0) {
|
||||
const filesCount = files.filter((file) => file.file?.type === 'file').length;
|
||||
const imgCount = files.filter((file) => file.file?.type === 'image').length;
|
||||
|
||||
if (userInput.some((item) => item.type === 'text')) {
|
||||
return userInput.map((item) => {
|
||||
if (item.type === 'text') {
|
||||
const text = item.text?.content || '';
|
||||
|
||||
return {
|
||||
...item,
|
||||
text: {
|
||||
content: getMultiplePrompt({ fileCount: filesCount, imgCount, question: text })
|
||||
}
|
||||
};
|
||||
}
|
||||
return item;
|
||||
});
|
||||
}
|
||||
|
||||
// Every input is a file
|
||||
return [
|
||||
{
|
||||
type: ChatItemValueTypeEnum.text,
|
||||
text: {
|
||||
content: getMultiplePrompt({ fileCount: filesCount, imgCount, question: '' })
|
||||
}
|
||||
}
|
||||
];
|
||||
}
|
||||
|
||||
return userInput;
|
||||
};
|
||||
|
||||
export const getToolNodesByIds = ({
|
||||
toolNodeIds,
|
||||
runtimeNodes
|
||||
}: {
|
||||
toolNodeIds: string[];
|
||||
runtimeNodes: RuntimeNodeItemType[];
|
||||
}): ToolNodeItemType[] => {
|
||||
const nodeMap = new Map(runtimeNodes.map((node) => [node.nodeId, node]));
|
||||
|
||||
return toolNodeIds
|
||||
.map((nodeId) => nodeMap.get(nodeId))
|
||||
.filter((tool): tool is RuntimeNodeItemType => Boolean(tool))
|
||||
.map((tool) => {
|
||||
const toolParams: FlowNodeInputItemType[] = [];
|
||||
let jsonSchema: JSONSchemaInputType | undefined;
|
||||
|
||||
for (const input of tool.inputs) {
|
||||
if (input.toolDescription) {
|
||||
toolParams.push(input);
|
||||
}
|
||||
|
||||
if (input.key === NodeInputKeyEnum.toolData) {
|
||||
jsonSchema = (input.value as McpToolDataType).inputSchema;
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
...tool,
|
||||
toolParams,
|
||||
jsonSchema
|
||||
};
|
||||
});
|
||||
};
|
@@ -2,9 +2,9 @@ import { FlowNodeTypeEnum } from '@fastgpt/global/core/workflow/node/constant';
|
||||
import { dispatchAppRequest } from './abandoned/runApp';
|
||||
import { dispatchClassifyQuestion } from './ai/classifyQuestion';
|
||||
import { dispatchContentExtract } from './ai/extract';
|
||||
import { dispatchRunTools } from './ai/agent/index';
|
||||
import { dispatchStopToolCall } from './ai/agent/stopTool';
|
||||
import { dispatchToolParams } from './ai/agent/toolParams';
|
||||
import { dispatchRunTools } from './ai/tool/index';
|
||||
import { dispatchStopToolCall } from './ai/tool/stopTool';
|
||||
import { dispatchToolParams } from './ai/tool/toolParams';
|
||||
import { dispatchChatCompletion } from './ai/chat';
|
||||
import { dispatchCodeSandbox } from './tools/codeSandbox';
|
||||
import { dispatchDatasetConcat } from './dataset/concat';
|
||||
@@ -30,6 +30,7 @@ import { dispatchIfElse } from './tools/runIfElse';
|
||||
import { dispatchLafRequest } from './tools/runLaf';
|
||||
import { dispatchUpdateVariable } from './tools/runUpdateVar';
|
||||
import { dispatchTextEditor } from './tools/textEditor';
|
||||
import { dispatchRunAgent } from './ai/agent';
|
||||
|
||||
export const callbackMap: Record<FlowNodeTypeEnum, Function> = {
|
||||
[FlowNodeTypeEnum.workflowStart]: dispatchWorkflowStart,
|
||||
@@ -45,7 +46,8 @@ export const callbackMap: Record<FlowNodeTypeEnum, Function> = {
|
||||
[FlowNodeTypeEnum.pluginInput]: dispatchPluginInput,
|
||||
[FlowNodeTypeEnum.pluginOutput]: dispatchPluginOutput,
|
||||
[FlowNodeTypeEnum.queryExtension]: dispatchQueryExtension,
|
||||
[FlowNodeTypeEnum.agent]: dispatchRunTools,
|
||||
[FlowNodeTypeEnum.agent]: dispatchRunAgent,
|
||||
[FlowNodeTypeEnum.toolCall]: dispatchRunTools,
|
||||
[FlowNodeTypeEnum.stopTool]: dispatchStopToolCall,
|
||||
[FlowNodeTypeEnum.toolParams]: dispatchToolParams,
|
||||
[FlowNodeTypeEnum.lafModule]: dispatchLafRequest,
|
||||
|
@@ -44,6 +44,7 @@ const nodeTypes: Record<FlowNodeTypeEnum, any> = {
|
||||
[FlowNodeTypeEnum.pluginOutput]: dynamic(() => import('./nodes/NodePluginIO/PluginOutput')),
|
||||
[FlowNodeTypeEnum.pluginModule]: NodeSimple,
|
||||
[FlowNodeTypeEnum.queryExtension]: NodeSimple,
|
||||
[FlowNodeTypeEnum.toolCall]: undefined,
|
||||
[FlowNodeTypeEnum.agent]: dynamic(() => import('./nodes/NodeAgent')),
|
||||
[FlowNodeTypeEnum.stopTool]: (data: NodeProps<FlowNodeItemType>) => (
|
||||
<NodeSimple {...data} minW={'100px'} maxW={'300px'} />
|
||||
|
Reference in New Issue
Block a user