mirror of
https://github.com/labring/FastGPT.git
synced 2025-08-03 05:19:51 +00:00
Extraction schema (#398)
This commit is contained in:
@@ -105,7 +105,7 @@ async function functionCall({
|
||||
required: ['type']
|
||||
}
|
||||
};
|
||||
const ai = getAIApi(user.openaiAccount);
|
||||
const ai = getAIApi(user.openaiAccount, 48000);
|
||||
|
||||
const response = await ai.chat.completions.create({
|
||||
model: cqModel.model,
|
||||
|
@@ -126,7 +126,7 @@ async function functionCall({
|
||||
}
|
||||
};
|
||||
|
||||
const ai = getAIApi(user.openaiAccount);
|
||||
const ai = getAIApi(user.openaiAccount, 480000);
|
||||
|
||||
const response = await ai.chat.completions.create({
|
||||
model: extractModel.model,
|
||||
|
@@ -10,7 +10,7 @@ import { TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { getChatModel } from '@/service/utils/data';
|
||||
import { countModelPrice } from '@/service/common/bill/push';
|
||||
import { ChatModelItemType } from '@/types/model';
|
||||
import { postTextCensor } from '@/service/common/api/plugins';
|
||||
import { postTextCensor } from '@fastgpt/common/plusApi/censor';
|
||||
import { ChatCompletionRequestMessageRoleEnum } from '@fastgpt/core/ai/constant';
|
||||
import { AppModuleItemType } from '@/types/app';
|
||||
import { countMessagesTokens, sliceMessagesTB } from '@/utils/common/tiktoken';
|
||||
@@ -151,7 +151,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
};
|
||||
} else {
|
||||
const unStreamResponse = response as ChatCompletion;
|
||||
const answer = unStreamResponse.choices?.[0].message?.content || '';
|
||||
const answer = unStreamResponse.choices?.[0]?.message?.content || '';
|
||||
const totalTokens = unStreamResponse.usage?.total_tokens || 0;
|
||||
|
||||
const completeMessages = filterMessages.concat({
|
||||
|
@@ -24,6 +24,7 @@ export type KBSearchResponse = {
|
||||
export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSearchResponse> {
|
||||
const {
|
||||
moduleName,
|
||||
user,
|
||||
inputs: { kbList = [], similarity = 0.4, limit = 5, userChatInput }
|
||||
} = props as KBSearchProps;
|
||||
|
||||
@@ -45,10 +46,10 @@ export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSe
|
||||
// search kb
|
||||
const res: any = await PgClient.query(
|
||||
`BEGIN;
|
||||
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
|
||||
SET LOCAL hnsw.ef_search = ${global.systemEnv.pgHNSWEfSearch || 40};
|
||||
select id, kb_id, q, a, source, file_id, (vector <#> '[${
|
||||
vectors[0]
|
||||
}]') * -1 AS score from ${PgDatasetTableName} where kb_id IN (${kbList
|
||||
}]') * -1 AS score from ${PgDatasetTableName} where user_id='${user._id}' AND kb_id IN (${kbList
|
||||
.map((item) => `'${item.kbId}'`)
|
||||
.join(',')}) AND vector <#> '[${vectors[0]}]' < -${similarity} order by vector <#> '[${
|
||||
vectors[0]
|
||||
|
Reference in New Issue
Block a user