fix: stream response (#4853)

This commit is contained in:
Archer
2025-05-21 10:21:20 +08:00
committed by GitHub
parent aa55f059d4
commit dd3c251603
6 changed files with 342 additions and 313 deletions

View File

@@ -19,4 +19,6 @@ weight: 790
## 🐛 修复
1. 全文检索多知识库时排序得分排序不正确
1. 全文检索多知识库时排序得分排序不正确
2. 流响应捕获 finish_reason 可能不正确。
3. 工具调用模式,未保存思考输出。

View File

@@ -18,15 +18,17 @@ import json5 from 'json5';
*/
export const computedMaxToken = ({
maxToken,
model
model,
min
}: {
maxToken?: number;
model: LLMModelItemType;
min?: number;
}) => {
if (maxToken === undefined) return;
maxToken = Math.min(maxToken, model.maxResponse);
return maxToken;
return Math.max(maxToken, min || 0);
};
// FastGPT temperature range: [0,10], ai temperature:[0,2],{0,1]……
@@ -178,7 +180,7 @@ export const llmStreamResponseToAnswerText = async (
}
}
return {
text: parseReasoningContent(answer)[1],
text: removeDatasetCiteText(parseReasoningContent(answer)[1], false),
usage,
toolCalls
};
@@ -192,8 +194,9 @@ export const llmUnStreamResponseToAnswerText = async (
}> => {
const answer = response.choices?.[0]?.message?.content || '';
const toolCalls = response.choices?.[0]?.message?.tool_calls;
return {
text: answer,
text: removeDatasetCiteText(parseReasoningContent(answer)[1], false),
usage: response.usage,
toolCalls
};
@@ -240,6 +243,12 @@ export const parseLLMStreamResponse = () => {
let citeBuffer = '';
const maxCiteBufferLength = 32; // [Object](CITE)总长度为32
// Buffer
let buffer_finishReason: CompletionFinishReason = null;
let buffer_usage: CompletionUsage = getLLMDefaultUsage();
let buffer_reasoningContent = '';
let buffer_content = '';
/*
parseThinkTag - 只控制是否主动解析 <think></think>,如果接口已经解析了,则不再解析。
retainDatasetCite -
@@ -257,6 +266,7 @@ export const parseLLMStreamResponse = () => {
};
finish_reason?: CompletionFinishReason;
}[];
usage?: CompletionUsage;
};
parseThinkTag?: boolean;
retainDatasetCite?: boolean;
@@ -266,72 +276,71 @@ export const parseLLMStreamResponse = () => {
responseContent: string;
finishReason: CompletionFinishReason;
} => {
const finishReason = part.choices?.[0]?.finish_reason || null;
const content = part.choices?.[0]?.delta?.content || '';
// @ts-ignore
const reasoningContent = part.choices?.[0]?.delta?.reasoning_content || '';
const isStreamEnd = !!finishReason;
const data = (() => {
buffer_usage = part.usage || buffer_usage;
// Parse think
const { reasoningContent: parsedThinkReasoningContent, content: parsedThinkContent } = (() => {
if (reasoningContent || !parseThinkTag) {
isInThinkTag = false;
return { reasoningContent, content };
}
const finishReason = part.choices?.[0]?.finish_reason || null;
buffer_finishReason = finishReason || buffer_finishReason;
if (!content) {
return {
reasoningContent: '',
content: ''
};
}
const content = part.choices?.[0]?.delta?.content || '';
// @ts-ignore
const reasoningContent = part.choices?.[0]?.delta?.reasoning_content || '';
const isStreamEnd = !!buffer_finishReason;
// 如果不在 think 标签中,或者有 reasoningContent(接口已解析),则返回 reasoningContent 和 content
if (isInThinkTag === false) {
return {
reasoningContent: '',
content
};
}
// Parse think
const { reasoningContent: parsedThinkReasoningContent, content: parsedThinkContent } =
(() => {
if (reasoningContent || !parseThinkTag) {
isInThinkTag = false;
return { reasoningContent, content };
}
// 检测是否为 think 标签开头的数据
if (isInThinkTag === undefined) {
// Parse content think and answer
startTagBuffer += content;
// 太少内容时候,暂时不解析
if (startTagBuffer.length < thinkStartChars.length) {
if (isStreamEnd) {
const tmpContent = startTagBuffer;
startTagBuffer = '';
// 如果不在 think 标签中,或者有 reasoningContent(接口已解析),则返回 reasoningContent 和 content
if (isInThinkTag === false) {
return {
reasoningContent: '',
content: tmpContent
content
};
}
return {
reasoningContent: '',
content: ''
};
}
if (startTagBuffer.startsWith(thinkStartChars)) {
isInThinkTag = true;
return {
reasoningContent: startTagBuffer.slice(thinkStartChars.length),
content: ''
};
}
// 检测是否为 think 标签开头的数据
if (isInThinkTag === undefined) {
// Parse content think and answer
startTagBuffer += content;
// 太少内容时候,暂时不解析
if (startTagBuffer.length < thinkStartChars.length) {
if (isStreamEnd) {
const tmpContent = startTagBuffer;
startTagBuffer = '';
return {
reasoningContent: '',
content: tmpContent
};
}
return {
reasoningContent: '',
content: ''
};
}
// 如果未命中 think 标签,则认为不在 think 标签中,返回 buffer 内容作为 content
isInThinkTag = false;
return {
reasoningContent: '',
content: startTagBuffer
};
}
if (startTagBuffer.startsWith(thinkStartChars)) {
isInThinkTag = true;
return {
reasoningContent: startTagBuffer.slice(thinkStartChars.length),
content: ''
};
}
// 确认是 think 标签内容,开始返回 think 内容,并实时检测 </think>
/*
// 如果未命中 think 标签,则认为不在 think 标签中,返回 buffer 内容作为 content
isInThinkTag = false;
return {
reasoningContent: '',
content: startTagBuffer
};
}
// 确认是 think 标签内容,开始返回 think 内容,并实时检测 </think>
/*
检测 </think> 方案。
存储所有疑似 </think> 的内容,直到检测到完整的 </think> 标签或超出 </think> 长度。
content 返回值包含以下几种情况:
@@ -342,124 +351,145 @@ export const parseLLMStreamResponse = () => {
</think>abc - 完全命中尾标签
k>abc - 命中一部分尾标签
*/
// endTagBuffer 专门用来记录疑似尾标签的内容
if (endTagBuffer) {
endTagBuffer += content;
if (endTagBuffer.includes(thinkEndChars)) {
isInThinkTag = false;
const answer = endTagBuffer.slice(thinkEndChars.length);
return {
reasoningContent: '',
content: answer
};
} else if (endTagBuffer.length >= thinkEndChars.length) {
// 缓存内容超出尾标签长度,且仍未命中 </think>,则认为本次猜测 </think> 失败,仍处于 think 阶段。
const tmp = endTagBuffer;
endTagBuffer = '';
return {
reasoningContent: tmp,
content: ''
};
}
return {
reasoningContent: '',
content: ''
};
} else if (content.includes(thinkEndChars)) {
// 返回内容,完整命中</think>,直接结束
isInThinkTag = false;
const [think, answer] = content.split(thinkEndChars);
return {
reasoningContent: think,
content: answer
};
} else {
// 无 buffer且未命中 </think>,开始疑似 </think> 检测。
for (let i = 1; i < thinkEndChars.length; i++) {
const partialEndTag = thinkEndChars.slice(0, i);
// 命中一部分尾标签
if (content.endsWith(partialEndTag)) {
const think = content.slice(0, -partialEndTag.length);
endTagBuffer += partialEndTag;
// endTagBuffer 专门用来记录疑似尾标签的内容
if (endTagBuffer) {
endTagBuffer += content;
if (endTagBuffer.includes(thinkEndChars)) {
isInThinkTag = false;
const answer = endTagBuffer.slice(thinkEndChars.length);
return {
reasoningContent: '',
content: answer
};
} else if (endTagBuffer.length >= thinkEndChars.length) {
// 缓存内容超出尾标签长度,且仍未命中 </think>,则认为本次猜测 </think> 失败,仍处于 think 阶段。
const tmp = endTagBuffer;
endTagBuffer = '';
return {
reasoningContent: tmp,
content: ''
};
}
return {
reasoningContent: think,
reasoningContent: '',
content: ''
};
} else if (content.includes(thinkEndChars)) {
// 返回内容,完整命中</think>,直接结束
isInThinkTag = false;
const [think, answer] = content.split(thinkEndChars);
return {
reasoningContent: think,
content: answer
};
} else {
// 无 buffer且未命中 </think>,开始疑似 </think> 检测。
for (let i = 1; i < thinkEndChars.length; i++) {
const partialEndTag = thinkEndChars.slice(0, i);
// 命中一部分尾标签
if (content.endsWith(partialEndTag)) {
const think = content.slice(0, -partialEndTag.length);
endTagBuffer += partialEndTag;
return {
reasoningContent: think,
content: ''
};
}
}
}
}
// 完全未命中尾标签,还是 think 阶段。
return {
reasoningContent: content,
content: ''
};
})();
// Parse datset cite
if (retainDatasetCite) {
return {
reasoningContent: parsedThinkReasoningContent,
content: parsedThinkContent,
responseContent: parsedThinkContent,
finishReason: buffer_finishReason
};
}
// 完全未命中尾标签,还是 think 阶段。
return {
reasoningContent: content,
content: ''
};
})();
// 缓存包含 [ 的字符串,直到超出 maxCiteBufferLength 再一次性返回
const parseCite = (text: string) => {
// 结束时,返回所有剩余内容
if (isStreamEnd) {
const content = citeBuffer + text;
return {
content: removeDatasetCiteText(content, false)
};
}
// 新内容包含 [,初始化缓冲数据
if (text.includes('[')) {
const index = text.indexOf('[');
const beforeContent = citeBuffer + text.slice(0, index);
citeBuffer = text.slice(index);
// beforeContent 可能是:普通字符串,带 [ 的字符串
return {
content: removeDatasetCiteText(beforeContent, false)
};
}
// 处于 Cite 缓冲区,判断是否满足条件
else if (citeBuffer) {
citeBuffer += text;
// 检查缓冲区长度是否达到完整Quote长度或已经流结束
if (citeBuffer.length >= maxCiteBufferLength) {
const content = removeDatasetCiteText(citeBuffer, false);
citeBuffer = '';
return {
content
};
} else {
// 暂时不返回内容
return { content: '' };
}
}
return {
content: text
};
};
const { content: pasedCiteContent } = parseCite(parsedThinkContent);
// Parse datset cite
if (retainDatasetCite) {
return {
reasoningContent: parsedThinkReasoningContent,
content: parsedThinkContent,
responseContent: parsedThinkContent,
finishReason
responseContent: pasedCiteContent,
finishReason: buffer_finishReason
};
}
})();
// 缓存包含 [ 的字符串,直到超出 maxCiteBufferLength 再一次性返回
const parseCite = (text: string) => {
// 结束时,返回所有剩余内容
if (isStreamEnd) {
const content = citeBuffer + text;
return {
content: removeDatasetCiteText(content, false)
};
}
buffer_reasoningContent += data.reasoningContent;
buffer_content += data.content;
// 新内容包含 [,初始化缓冲数据
if (text.includes('[')) {
const index = text.indexOf('[');
const beforeContent = citeBuffer + text.slice(0, index);
citeBuffer = text.slice(index);
// beforeContent 可能是:普通字符串,带 [ 的字符串
return {
content: removeDatasetCiteText(beforeContent, false)
};
}
// 处于 Cite 缓冲区,判断是否满足条件
else if (citeBuffer) {
citeBuffer += text;
// 检查缓冲区长度是否达到完整Quote长度或已经流结束
if (citeBuffer.length >= maxCiteBufferLength) {
const content = removeDatasetCiteText(citeBuffer, false);
citeBuffer = '';
return {
content
};
} else {
// 暂时不返回内容
return { content: '' };
}
}
return {
content: text
};
};
const { content: pasedCiteContent } = parseCite(parsedThinkContent);
return data;
};
const getResponseData = () => {
return {
reasoningContent: parsedThinkReasoningContent,
content: parsedThinkContent,
responseContent: pasedCiteContent,
finishReason
finish_reason: buffer_finishReason,
usage: buffer_usage,
reasoningContent: buffer_reasoningContent,
content: buffer_content
};
};
const updateFinishReason = (finishReason: CompletionFinishReason) => {
buffer_finishReason = finishReason;
};
return {
parsePart
parsePart,
getResponseData,
updateFinishReason
};
};

View File

@@ -1,13 +1,14 @@
import { createChatCompletion } from '../../../../ai/config';
import { filterGPTMessageByMaxContext, loadRequestMessages } from '../../../../chat/utils';
import {
type ChatCompletion,
type StreamChatType,
type ChatCompletionMessageParam,
type ChatCompletionCreateParams,
type ChatCompletionMessageFunctionCall,
type ChatCompletionFunctionMessageParam,
type ChatCompletionAssistantMessageParam
import type {
ChatCompletion,
StreamChatType,
ChatCompletionMessageParam,
ChatCompletionCreateParams,
ChatCompletionMessageFunctionCall,
ChatCompletionFunctionMessageParam,
ChatCompletionAssistantMessageParam,
CompletionFinishReason
} from '@fastgpt/global/core/ai/type.d';
import { type NextApiResponse } from 'next';
import { responseWriteController } from '../../../../../common/response';
@@ -259,14 +260,15 @@ export const runToolWithFunctionCall = async (
}
});
let { answer, functionCalls, inputTokens, outputTokens } = await (async () => {
let { answer, functionCalls, inputTokens, outputTokens, finish_reason } = await (async () => {
if (isStreamResponse) {
if (!res || res.closed) {
return {
answer: '',
functionCalls: [],
inputTokens: 0,
outputTokens: 0
outputTokens: 0,
finish_reason: 'close' as const
};
}
const result = await streamResponse({
@@ -281,10 +283,12 @@ export const runToolWithFunctionCall = async (
answer: result.answer,
functionCalls: result.functionCalls,
inputTokens: result.usage.prompt_tokens,
outputTokens: result.usage.completion_tokens
outputTokens: result.usage.completion_tokens,
finish_reason: result.finish_reason
};
} else {
const result = aiResponse as ChatCompletion;
const finish_reason = result.choices?.[0]?.finish_reason as CompletionFinishReason;
const function_call = result.choices?.[0]?.message?.function_call;
const usage = result.usage;
@@ -315,7 +319,8 @@ export const runToolWithFunctionCall = async (
answer,
functionCalls: toolCalls,
inputTokens: usage?.prompt_tokens,
outputTokens: usage?.completion_tokens
outputTokens: usage?.completion_tokens,
finish_reason
};
}
})();
@@ -481,7 +486,8 @@ export const runToolWithFunctionCall = async (
completeMessages,
assistantResponses: toolNodeAssistants,
runTimes,
toolWorkflowInteractiveResponse
toolWorkflowInteractiveResponse,
finish_reason
};
}
@@ -495,7 +501,8 @@ export const runToolWithFunctionCall = async (
toolNodeInputTokens,
toolNodeOutputTokens,
assistantResponses: toolNodeAssistants,
runTimes
runTimes,
finish_reason
}
);
} else {
@@ -523,7 +530,8 @@ export const runToolWithFunctionCall = async (
: outputTokens,
completeMessages,
assistantResponses: [...assistantResponses, ...toolNodeAssistant.value],
runTimes: (response?.runTimes || 0) + 1
runTimes: (response?.runTimes || 0) + 1,
finish_reason
};
}
};
@@ -546,28 +554,25 @@ async function streamResponse({
readStream: stream
});
let textAnswer = '';
let functionCalls: ChatCompletionMessageFunctionCall[] = [];
let functionId = getNanoid();
let usage = getLLMDefaultUsage();
const { parsePart } = parseLLMStreamResponse();
const { parsePart, getResponseData, updateFinishReason } = parseLLMStreamResponse();
for await (const part of stream) {
usage = part.usage || usage;
if (res.closed) {
stream.controller?.abort();
updateFinishReason('close');
break;
}
const { content: toolChoiceContent, responseContent } = parsePart({
const { responseContent } = parsePart({
part,
parseThinkTag: false,
retainDatasetCite
});
const responseChoice = part.choices?.[0]?.delta;
textAnswer += toolChoiceContent;
if (responseContent) {
workflowStreamResponse?.({
@@ -577,7 +582,7 @@ async function streamResponse({
text: responseContent
})
});
} else if (responseChoice.function_call) {
} else if (responseChoice?.function_call) {
const functionCall: {
arguments?: string;
name?: string;
@@ -640,5 +645,7 @@ async function streamResponse({
}
}
return { answer: textAnswer, functionCalls, usage };
const { content, finish_reason, usage } = getResponseData();
return { answer: content, functionCalls, finish_reason, usage };
}

View File

@@ -220,7 +220,8 @@ export const runToolWithPromptCall = async (
const max_tokens = computedMaxToken({
model: toolModel,
maxToken
maxToken,
min: 100
});
const filterMessages = await filterGPTMessageByMaxContext({
messages,
@@ -592,28 +593,22 @@ async function streamResponse({
let startResponseWrite = false;
let answer = '';
let reasoning = '';
let finish_reason: CompletionFinishReason = null;
let usage = getLLMDefaultUsage();
const { parsePart } = parseLLMStreamResponse();
const { parsePart, getResponseData, updateFinishReason } = parseLLMStreamResponse();
for await (const part of stream) {
usage = part.usage || usage;
if (res.closed) {
stream.controller?.abort();
finish_reason = 'close';
updateFinishReason('close');
break;
}
const { reasoningContent, content, responseContent, finishReason } = parsePart({
const { reasoningContent, content, responseContent } = parsePart({
part,
parseThinkTag: aiChatReasoning,
retainDatasetCite
});
finish_reason = finish_reason || finishReason;
answer += content;
reasoning += reasoningContent;
// Reasoning response
if (aiChatReasoning && reasoningContent) {
@@ -658,7 +653,9 @@ async function streamResponse({
}
}
return { answer, reasoning, finish_reason, usage };
const { reasoningContent, content, finish_reason, usage } = getResponseData();
return { answer: content, reasoning: reasoningContent, finish_reason, usage };
}
const parseAnswer = (

View File

@@ -7,17 +7,13 @@ import {
type ChatCompletionToolMessageParam,
type ChatCompletionMessageParam,
type ChatCompletionTool,
type ChatCompletionAssistantMessageParam,
type CompletionFinishReason
} from '@fastgpt/global/core/ai/type';
import { type NextApiResponse } from 'next';
import { responseWriteController } from '../../../../../common/response';
import { SseResponseEventEnum } from '@fastgpt/global/core/workflow/runtime/constants';
import { textAdaptGptResponse } from '@fastgpt/global/core/workflow/runtime/utils';
import {
ChatCompletionRequestMessageRoleEnum,
getLLMDefaultUsage
} from '@fastgpt/global/core/ai/constants';
import { ChatCompletionRequestMessageRoleEnum } from '@fastgpt/global/core/ai/constants';
import { dispatchWorkFlow } from '../../index';
import {
type DispatchToolModuleProps,
@@ -254,7 +250,8 @@ export const runToolWithToolChoice = async (
const max_tokens = computedMaxToken({
model: toolModel,
maxToken
maxToken,
min: 100
});
// Filter histories by maxToken
@@ -319,97 +316,101 @@ export const runToolWithToolChoice = async (
}
});
let { answer, toolCalls, finish_reason, inputTokens, outputTokens } = await (async () => {
if (isStreamResponse) {
if (!res || res.closed) {
return {
answer: '',
toolCalls: [],
finish_reason: 'close' as const,
inputTokens: 0,
outputTokens: 0
};
}
let { reasoningContent, answer, toolCalls, finish_reason, inputTokens, outputTokens } =
await (async () => {
if (isStreamResponse) {
if (!res || res.closed) {
return {
reasoningContent: '',
answer: '',
toolCalls: [],
finish_reason: 'close' as const,
inputTokens: 0,
outputTokens: 0
};
}
const result = await streamResponse({
res,
workflowStreamResponse,
toolNodes,
stream: aiResponse,
aiChatReasoning,
retainDatasetCite
});
return {
answer: result.answer,
toolCalls: result.toolCalls,
finish_reason: result.finish_reason,
inputTokens: result.usage.prompt_tokens,
outputTokens: result.usage.completion_tokens
};
} else {
const result = aiResponse as ChatCompletion;
const finish_reason = result.choices?.[0]?.finish_reason as CompletionFinishReason;
const calls = result.choices?.[0]?.message?.tool_calls || [];
const answer = result.choices?.[0]?.message?.content || '';
// @ts-ignore
const reasoningContent = result.choices?.[0]?.message?.reasoning_content || '';
const usage = result.usage;
if (aiChatReasoning && reasoningContent) {
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
reasoning_content: removeDatasetCiteText(reasoningContent, retainDatasetCite)
})
const result = await streamResponse({
res,
workflowStreamResponse,
toolNodes,
stream: aiResponse,
aiChatReasoning,
retainDatasetCite
});
}
// 格式化 toolCalls
const toolCalls = calls.map((tool) => {
const toolNode = toolNodes.find((item) => item.nodeId === tool.function?.name);
return {
reasoningContent: result.reasoningContent,
answer: result.answer,
toolCalls: result.toolCalls,
finish_reason: result.finish_reason,
inputTokens: result.usage.prompt_tokens,
outputTokens: result.usage.completion_tokens
};
} else {
const result = aiResponse as ChatCompletion;
const finish_reason = result.choices?.[0]?.finish_reason as CompletionFinishReason;
const calls = result.choices?.[0]?.message?.tool_calls || [];
const answer = result.choices?.[0]?.message?.content || '';
// @ts-ignore
const reasoningContent = result.choices?.[0]?.message?.reasoning_content || '';
const usage = result.usage;
// 不支持 stream 模式的模型的这里需要补一个响应给客户端
workflowStreamResponse?.({
event: SseResponseEventEnum.toolCall,
data: {
tool: {
id: tool.id,
toolName: toolNode?.name || '',
toolAvatar: toolNode?.avatar || '',
functionName: tool.function.name,
params: tool.function?.arguments ?? '',
response: ''
if (aiChatReasoning && reasoningContent) {
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
reasoning_content: removeDatasetCiteText(reasoningContent, retainDatasetCite)
})
});
}
// 格式化 toolCalls
const toolCalls = calls.map((tool) => {
const toolNode = toolNodes.find((item) => item.nodeId === tool.function?.name);
// 不支持 stream 模式的模型的这里需要补一个响应给客户端
workflowStreamResponse?.({
event: SseResponseEventEnum.toolCall,
data: {
tool: {
id: tool.id,
toolName: toolNode?.name || '',
toolAvatar: toolNode?.avatar || '',
functionName: tool.function.name,
params: tool.function?.arguments ?? '',
response: ''
}
}
}
});
return {
...tool,
toolName: toolNode?.name || '',
toolAvatar: toolNode?.avatar || ''
};
});
if (answer) {
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
text: removeDatasetCiteText(answer, retainDatasetCite)
})
});
}
return {
...tool,
toolName: toolNode?.name || '',
toolAvatar: toolNode?.avatar || ''
reasoningContent: (reasoningContent as string) || '',
answer,
toolCalls: toolCalls,
finish_reason,
inputTokens: usage?.prompt_tokens,
outputTokens: usage?.completion_tokens
};
});
if (answer) {
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
text: removeDatasetCiteText(answer, retainDatasetCite)
})
});
}
return {
answer,
toolCalls: toolCalls,
finish_reason,
inputTokens: usage?.prompt_tokens,
outputTokens: usage?.completion_tokens
};
}
})();
if (!answer && toolCalls.length === 0) {
})();
if (!answer && !reasoningContent && toolCalls.length === 0) {
return Promise.reject(getEmptyResponseTip());
}
@@ -501,12 +502,13 @@ export const runToolWithToolChoice = async (
if (toolCalls.length > 0) {
// Run the tool, combine its results, and perform another round of AI calls
const assistantToolMsgParams: ChatCompletionAssistantMessageParam[] = [
...(answer
const assistantToolMsgParams: ChatCompletionMessageParam[] = [
...(answer || reasoningContent
? [
{
role: ChatCompletionRequestMessageRoleEnum.Assistant as 'assistant',
content: answer
content: answer,
reasoning_text: reasoningContent
}
]
: []),
@@ -627,9 +629,10 @@ export const runToolWithToolChoice = async (
);
} else {
// No tool is invoked, indicating that the process is over
const gptAssistantResponse: ChatCompletionAssistantMessageParam = {
const gptAssistantResponse: ChatCompletionMessageParam = {
role: ChatCompletionRequestMessageRoleEnum.Assistant,
content: answer
content: answer,
reasoning_text: reasoningContent
};
const completeMessages = filterMessages.concat(gptAssistantResponse);
inputTokens = inputTokens || (await countGptMessagesTokens(requestMessages, tools));
@@ -671,34 +674,23 @@ async function streamResponse({
readStream: stream
});
let textAnswer = '';
let callingTool: { name: string; arguments: string } | null = null;
let toolCalls: ChatCompletionMessageToolCall[] = [];
let finish_reason: CompletionFinishReason = null;
let usage = getLLMDefaultUsage();
const { parsePart } = parseLLMStreamResponse();
const { parsePart, getResponseData, updateFinishReason } = parseLLMStreamResponse();
for await (const part of stream) {
usage = part.usage || usage;
if (res.closed) {
stream.controller?.abort();
finish_reason = 'close';
updateFinishReason('close');
break;
}
const {
reasoningContent,
content: toolChoiceContent,
responseContent,
finishReason
} = parsePart({
const { reasoningContent, responseContent } = parsePart({
part,
parseThinkTag: true,
retainDatasetCite
});
textAnswer += toolChoiceContent;
finish_reason = finishReason || finish_reason;
const responseChoice = part.choices?.[0]?.delta;
@@ -800,5 +792,13 @@ async function streamResponse({
}
}
return { answer: textAnswer, toolCalls: toolCalls.filter(Boolean), finish_reason, usage };
const { reasoningContent, content, finish_reason, usage } = getResponseData();
return {
reasoningContent,
answer: content,
toolCalls: toolCalls.filter(Boolean),
finish_reason,
usage
};
}

View File

@@ -556,30 +556,21 @@ async function streamResponse({
res,
readStream: stream
});
let answer = '';
let reasoning = '';
let finish_reason: CompletionFinishReason = null;
let usage: CompletionUsage = getLLMDefaultUsage();
const { parsePart } = parseLLMStreamResponse();
const { parsePart, getResponseData, updateFinishReason } = parseLLMStreamResponse();
for await (const part of stream) {
usage = part.usage || usage;
if (res.closed) {
stream.controller?.abort();
finish_reason = 'close';
updateFinishReason('close');
break;
}
const { reasoningContent, content, responseContent, finishReason } = parsePart({
const { reasoningContent, responseContent } = parsePart({
part,
parseThinkTag,
retainDatasetCite
});
finish_reason = finish_reason || finishReason;
answer += content;
reasoning += reasoningContent;
if (aiChatReasoning && reasoningContent) {
workflowStreamResponse?.({
@@ -602,5 +593,7 @@ async function streamResponse({
}
}
const { reasoningContent: reasoning, content: answer, finish_reason, usage } = getResponseData();
return { answer, reasoning, finish_reason, usage };
}