V4.8.20 feature (#3686)

* Aiproxy (#3649)

* model config

* feat: model config ui

* perf: rename variable

* feat: custom request url

* perf: model buffer

* perf: init model

* feat: json model config

* auto login

* fix: ts

* update packages

* package

* fix: dockerfile

* feat: usage filter & export & dashbord (#3538)

* feat: usage filter & export & dashbord

* adjust ui

* fix tmb scroll

* fix code & selecte all

* merge

* perf: usages list;perf: move components (#3654)

* perf: usages list

* team sub plan load

* perf: usage dashboard code

* perf: dashboard ui

* perf: move components

* add default model config (#3653)

* 4.8.20 test (#3656)

* provider

* perf: model config

* model perf (#3657)

* fix: model

* dataset quote

* perf: model config

* model tag

* doubao model config

* perf: config model

* feat: model test

* fix: POST 500 error on dingtalk bot (#3655)

* feat: default model (#3662)

* move model config

* feat: default model

* fix: false triggerd org selection (#3661)

* export usage csv i18n (#3660)

* export usage csv i18n

* fix build

* feat: markdown extension (#3663)

* feat: markdown extension

* media cros

* rerank test

* default price

* perf: default model

* fix: cannot custom provider

* fix: default model select

* update bg

* perf: default model selector

* fix: usage export

* i18n

* fix: rerank

* update init extension

* perf: ip limit check

* doubao model order

* web default modle

* perf: tts selector

* perf: tts error

* qrcode package

* reload buffer (#3665)

* reload buffer

* reload buffer

* tts selector

* fix: err tip (#3666)

* fix: err tip

* perf: training queue

* doc

* fix interactive edge (#3659)

* fix interactive edge

* fix

* comment

* add gemini model

* fix: chat model select

* perf: supplement assistant empty response (#3669)

* perf: supplement assistant empty response

* check array

* perf: max_token count;feat: support resoner output;fix: member scroll (#3681)

* perf: supplement assistant empty response

* check array

* perf: max_token count

* feat: support resoner output

* member scroll

* update provider order

* i18n

* fix: stream response (#3682)

* perf: supplement assistant empty response

* check array

* fix: stream response

* fix: model config cannot set to null

* fix: reasoning response (#3684)

* perf: supplement assistant empty response

* check array

* fix: reasoning response

* fix: reasoning response

* doc (#3685)

* perf: supplement assistant empty response

* check array

* doc

* lock

* animation

* update doc

* update compose

* doc

* doc

---------

Co-authored-by: heheer <heheer@sealos.io>
Co-authored-by: a.e. <49438478+I-Info@users.noreply.github.com>
This commit is contained in:
Archer
2025-02-05 00:10:47 +08:00
committed by GitHub
parent c393002f1d
commit db2c0a0bdb
496 changed files with 9031 additions and 4726 deletions

View File

@@ -2,10 +2,12 @@ import { replaceVariable } from '@fastgpt/global/common/string/tools';
import { createChatCompletion } from '../config';
import { ChatItemType } from '@fastgpt/global/core/chat/type';
import { countGptMessagesTokens, countPromptTokens } from '../../../common/string/tiktoken/index';
import { chatValue2RuntimePrompt } from '@fastgpt/global/core/chat/adapt';
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
import { getLLMModel } from '../model';
import { llmCompletionsBodyFormat } from '../utils';
import { addLog } from '../../../common/system/log';
import { filterGPTMessageByMaxContext } from '../../chat/utils';
import json5 from 'json5';
/*
query extension - 问题扩展
@@ -13,72 +15,73 @@ import { addLog } from '../../../common/system/log';
*/
const title = global.feConfigs?.systemTitle || 'FastAI';
const defaultPrompt = `作为一个向量检索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高向量检索的语义丰富度,提高向量检索的精度。
const defaultPrompt = `## 你的任务
你作为一个向量检索助手,你的任务是结合历史记录,从不同角度,为“原问题”生成个不同版本的“检索词”,从而提高向量检索的语义丰富度,提高向量检索的精度。
生成的问题要求指向对象清晰明确,并与“原问题语言相同”。
参考 <Example></Example> 标中的示例来完成任务。
## 参考示例
<Example>
历史记录:
"""
null
"""
原问题: 介绍下剧情。
检索词: ["介绍下故事的背景。","故事的主题是什么?","介绍下故事的主要人物。"]
----------------
历史记录:
"""
Q: 对话背景。
A: 当前对话是关于 Nginx 的介绍和使用等。
user: 对话背景。
assistant: 当前对话是关于 Nginx 的介绍和使用等。
"""
原问题: 怎么下载
检索词: ["Nginx 如何下载?","下载 Nginx 需要什么条件?","有哪些渠道可以下载 Nginx"]
----------------
历史记录:
"""
Q: 对话背景。
A: 当前对话是关于 Nginx 的介绍和使用等。
Q: 报错 "no connection"
A: 报错"no connection"可能是因为……
user: 对话背景。
assistant: 当前对话是关于 Nginx 的介绍和使用等。
user: 报错 "no connection"
assistant: 报错"no connection"可能是因为……
"""
原问题: 怎么解决
检索词: ["Nginx报错"no connection"如何解决?","造成'no connection'报错的原因。","Nginx提示'no connection',要怎么办?"]
----------------
历史记录:
"""
Q: 护产假多少天?
A: 护产假的天数根据员工所在的城市而定。请提供您所在的城市,以便我回答您的问题。
user: How long is the maternity leave?
assistant: The number of days of maternity leave depends on the city in which the employee is located. Please provide your city so that I can answer your questions.
"""
原问题: 沈阳
检索词: ["沈阳的护产假多少天?","沈阳的护产假政策。","沈阳的护产假标准。"]
原问题: ShenYang
检索词: ["How many days is maternity leave in Shenyang?","Shenyang's maternity leave policy.","The standard of maternity leave in Shenyang."]
----------------
历史记录:
"""
Q: 作者是谁?
A: ${title} 的作者是 labring。
user: 作者是谁?
assistant: ${title} 的作者是 labring。
"""
原问题: Tell me about him
检索词: ["Introduce labring, the author of ${title}." ," Background information on author labring." "," Why does labring do ${title}?"]
----------------
历史记录:
"""
Q: 对话背景。
A: 关于 ${title} 的介绍和使用等问题。
user: 对话背景。
assistant: 关于 ${title} 的介绍和使用等问题。
"""
原问题: 你好。
检索词: ["你好"]
----------------
历史记录:
"""
Q: ${title} 如何收费?
A: ${title} 收费可以参考……
user: ${title} 如何收费?
assistant: ${title} 收费可以参考……
"""
原问题: 你知道 laf 么?
检索词: ["laf 的官网地址是多少?","laf 的使用教程。","laf 有什么特点和优势。"]
----------------
历史记录:
"""
Q: ${title} 的优势
A: 1. 开源
user: ${title} 的优势
assistant: 1. 开源
2. 简便
3. 扩展性强
"""
@@ -87,18 +90,20 @@ A: 1. 开源
----------------
历史记录:
"""
Q: 什么是 ${title}
A: ${title} 是一个 RAG 平台。
Q: 什么是 Laf
A: Laf 是一个云函数开发平台。
user: 什么是 ${title}
assistant: ${title} 是一个 RAG 平台。
user: 什么是 Laf
assistant: Laf 是一个云函数开发平台。
"""
原问题: 它们有什么关系?
检索词: ["${title}和Laf有什么关系","介绍下${title}","介绍下Laf"]
</Example>
-----
## 输出要求
下面是正式的任务:
1. 输出格式为 JSON 数组,数组中每个元素为字符串。无需对输出进行任何解释。
2. 输出语言与原问题相同。原问题为中文则输出中文;原问题为英文则输出英文。
## 开始任务
历史记录:
"""
@@ -125,26 +130,39 @@ export const queryExtension = async ({
outputTokens: number;
}> => {
const systemFewShot = chatBg
? `Q: 对话背景。
A: ${chatBg}
? `user: 对话背景。
assistant: ${chatBg}
`
: '';
const historyFewShot = histories
.map((item) => {
const role = item.obj === 'Human' ? 'Q' : 'A';
return `${role}: ${chatValue2RuntimePrompt(item.value).text}`;
})
.join('\n');
const concatFewShot = `${systemFewShot}${historyFewShot}`.trim();
const modelData = getLLMModel(model);
const filterHistories = await filterGPTMessageByMaxContext({
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
maxContext: modelData.maxContext - 1000
});
const historyFewShot = filterHistories
.map((item) => {
const role = item.role;
const content = item.content;
if ((role === 'user' || role === 'assistant') && content) {
if (typeof content === 'string') {
return `${role}: ${content}`;
} else {
return `${role}: ${content.map((item) => (item.type === 'text' ? item.text : '')).join('\n')}`;
}
}
})
.filter(Boolean)
.join('\n');
const concatFewShot = `${systemFewShot}${historyFewShot}`.trim();
const messages = [
{
role: 'user',
content: replaceVariable(defaultPrompt, {
query: `${query}`,
histories: concatFewShot
histories: concatFewShot || 'null'
})
}
] as any;
@@ -154,7 +172,7 @@ A: ${chatBg}
{
stream: false,
model: modelData.model,
temperature: 0.01,
temperature: 0.1,
messages
},
modelData
@@ -172,22 +190,41 @@ A: ${chatBg}
};
}
const start = answer.indexOf('[');
const end = answer.lastIndexOf(']');
if (start === -1 || end === -1) {
addLog.warn('Query extension failed, not a valid JSON', {
answer
});
return {
rawQuery: query,
extensionQueries: [],
model,
inputTokens: 0,
outputTokens: 0
};
}
// Intercept the content of [] and retain []
answer = answer.match(/\[.*?\]/)?.[0] || '';
answer = answer.replace(/\\"/g, '"');
const jsonStr = answer
.substring(start, end + 1)
.replace(/(\\n|\\)/g, '')
.replace(/ /g, '');
try {
const queries = JSON.parse(answer) as string[];
const queries = json5.parse(jsonStr) as string[];
return {
rawQuery: query,
extensionQueries: Array.isArray(queries) ? queries : [],
extensionQueries: (Array.isArray(queries) ? queries : []).slice(0, 5),
model,
inputTokens: await countGptMessagesTokens(messages),
outputTokens: await countPromptTokens(answer)
};
} catch (error) {
addLog.error(`Query extension error`, error);
addLog.warn('Query extension failed, not a valid JSON', {
answer
});
return {
rawQuery: query,
extensionQueries: [],