mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00
docs
This commit is contained in:
243
files/models/ChatGLM2/openai_api.py
Normal file
243
files/models/ChatGLM2/openai_api.py
Normal file
@@ -0,0 +1,243 @@
|
||||
# coding=utf-8
|
||||
import time
|
||||
import torch
|
||||
import uvicorn
|
||||
from pydantic import BaseModel, Field
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from contextlib import asynccontextmanager
|
||||
from typing import List, Literal, Optional, Union
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from fastapi import Depends, HTTPException, Request
|
||||
from starlette.status import HTTP_401_UNAUTHORIZED
|
||||
import argparse
|
||||
import tiktoken
|
||||
import numpy as np
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI): # collects GPU memory
|
||||
yield
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: Literal["user", "assistant", "system"]
|
||||
content: str
|
||||
|
||||
|
||||
class DeltaMessage(BaseModel):
|
||||
role: Optional[Literal["user", "assistant", "system"]] = None
|
||||
content: Optional[str] = None
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[ChatMessage]
|
||||
temperature: Optional[float] = None
|
||||
top_p: Optional[float] = None
|
||||
max_length: Optional[int] = None
|
||||
stream: Optional[bool] = False
|
||||
|
||||
|
||||
class ChatCompletionResponseChoice(BaseModel):
|
||||
index: int
|
||||
message: ChatMessage
|
||||
finish_reason: Literal["stop", "length"]
|
||||
|
||||
|
||||
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||
index: int
|
||||
delta: DeltaMessage
|
||||
finish_reason: Optional[Literal["stop", "length"]]
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
model: str
|
||||
object: Literal["chat.completion", "chat.completion.chunk"]
|
||||
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
|
||||
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
|
||||
|
||||
async def verify_token(request: Request):
|
||||
auth_header = request.headers.get('Authorization')
|
||||
if auth_header:
|
||||
token_type, _, token = auth_header.partition(' ')
|
||||
if token_type.lower() == "bearer" and token == "sk-aaabbbcccdddeeefffggghhhiiijjjkkk": # 这里配置你的token
|
||||
return True
|
||||
raise HTTPException(
|
||||
status_code=HTTP_401_UNAUTHORIZED,
|
||||
detail="Invalid authorization credentials",
|
||||
)
|
||||
|
||||
class EmbeddingRequest(BaseModel):
|
||||
input: List[str]
|
||||
model: str
|
||||
|
||||
class EmbeddingResponse(BaseModel):
|
||||
data: list
|
||||
model: str
|
||||
object: str
|
||||
usage: dict
|
||||
|
||||
def num_tokens_from_string(string: str) -> int:
|
||||
"""Returns the number of tokens in a text string."""
|
||||
encoding = tiktoken.get_encoding('cl100k_base')
|
||||
num_tokens = len(encoding.encode(string))
|
||||
return num_tokens
|
||||
|
||||
def expand_features(embedding, target_length):
|
||||
poly = PolynomialFeatures(degree=2)
|
||||
expanded_embedding = poly.fit_transform(embedding.reshape(1, -1))
|
||||
expanded_embedding = expanded_embedding.flatten()
|
||||
if len(expanded_embedding) > target_length:
|
||||
# 如果扩展后的特征超过目标长度,可以通过截断或其他方法来减少维度
|
||||
expanded_embedding = expanded_embedding[:target_length]
|
||||
elif len(expanded_embedding) < target_length:
|
||||
# 如果扩展后的特征少于目标长度,可以通过填充或其他方法来增加维度
|
||||
expanded_embedding = np.pad(expanded_embedding, (0, target_length - len(expanded_embedding)))
|
||||
return expanded_embedding
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def create_chat_completion(request: ChatCompletionRequest, token: bool = Depends(verify_token)):
|
||||
global model, tokenizer
|
||||
|
||||
if request.messages[-1].role != "user":
|
||||
raise HTTPException(status_code=400, detail="Invalid request")
|
||||
query = request.messages[-1].content
|
||||
|
||||
prev_messages = request.messages[:-1]
|
||||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||
query = prev_messages.pop(0).content + query
|
||||
|
||||
history = []
|
||||
if len(prev_messages) % 2 == 0:
|
||||
for i in range(0, len(prev_messages), 2):
|
||||
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
||||
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
||||
|
||||
if request.stream:
|
||||
generate = predict(query, history, request.model)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
|
||||
response, _ = model.chat(tokenizer, query, history=history)
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
index=0,
|
||||
message=ChatMessage(role="assistant", content=response),
|
||||
finish_reason="stop"
|
||||
)
|
||||
|
||||
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion")
|
||||
|
||||
|
||||
async def predict(query: str, history: List[List[str]], model_id: str):
|
||||
global model, tokenizer
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(role="assistant"),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
current_length = 0
|
||||
|
||||
for new_response, _ in model.stream_chat(tokenizer, query, history):
|
||||
if len(new_response) == current_length:
|
||||
continue
|
||||
|
||||
new_text = new_response[current_length:]
|
||||
current_length = len(new_response)
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(content=new_text),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(),
|
||||
finish_reason="stop"
|
||||
)
|
||||
chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
|
||||
yield '[DONE]'
|
||||
|
||||
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
||||
async def get_embeddings(request: EmbeddingRequest, token: bool = Depends(verify_token)):
|
||||
|
||||
|
||||
# 计算嵌入向量和tokens数量
|
||||
embeddings = [embeddings_model.encode(text) for text in request.input]
|
||||
|
||||
# 如果嵌入向量的维度不为1536,则使用插值法扩展至1536维度
|
||||
embeddings = [expand_features(embedding, 1536) if len(embedding) < 1536 else embedding for embedding in embeddings]
|
||||
|
||||
# Min-Max normalization
|
||||
embeddings = [(embedding - np.min(embedding)) / (np.max(embedding) - np.min(embedding)) if np.max(embedding) != np.min(embedding) else embedding for embedding in embeddings]
|
||||
|
||||
# 将numpy数组转换为列表
|
||||
embeddings = [embedding.tolist() for embedding in embeddings]
|
||||
prompt_tokens = sum(len(text.split()) for text in request.input)
|
||||
total_tokens = sum(num_tokens_from_string(text) for text in request.input)
|
||||
|
||||
|
||||
response = {
|
||||
"data": [
|
||||
{
|
||||
"embedding": embedding,
|
||||
"index": index,
|
||||
"object": "embedding"
|
||||
} for index, embedding in enumerate(embeddings)
|
||||
],
|
||||
"model": request.model,
|
||||
"object": "list",
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"total_tokens": total_tokens,
|
||||
}
|
||||
}
|
||||
|
||||
return response
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_name", default="16", type=str, help="Model name")
|
||||
args = parser.parse_args()
|
||||
|
||||
model_dict = {
|
||||
"4": "THUDM/chatglm2-6b-int4",
|
||||
"8": "THUDM/chatglm2-6b-int8",
|
||||
"16": "THUDM/chatglm2-6b"
|
||||
}
|
||||
|
||||
model_name = model_dict.get(args.model_name, "THUDM/chatglm2-6b")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
|
||||
embeddings_model = SentenceTransformer('moka-ai/m3e-large',device='cpu')
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|
Reference in New Issue
Block a user