External dataset (#1497)

* perf: read rawText and chunk code

* perf: read raw text

* perf: read rawtext

* perf: token count

* log
This commit is contained in:
Archer
2024-05-16 11:47:53 +08:00
committed by GitHub
parent d5073f98ab
commit c6d9b15897
36 changed files with 531 additions and 267 deletions

View File

@@ -20,9 +20,9 @@
"export type ${TM_FILENAME_BASE}Response = {};",
"",
"async function handler(",
" req: ApiRequestProps<getDatasetTrainingQueueBody, getDatasetTrainingQueueQuery>,",
" req: ApiRequestProps<${TM_FILENAME_BASE}Body, ${TM_FILENAME_BASE}Query>,",
" res: ApiResponseType<any>",
"): Promise<getDatasetTrainingQueueResponse> {",
"): Promise<${TM_FILENAME_BASE}Response> {",
" $1",
" return {}",
"}",

View File

@@ -9,6 +9,9 @@ type SplitProps = {
overlapRatio?: number;
customReg?: string[];
};
export type TextSplitProps = Omit<SplitProps, 'text' | 'chunkLen'> & {
chunkLen?: number;
};
type SplitResponse = {
chunks: string[];
@@ -49,6 +52,7 @@ const strIsMdTable = (str: string) => {
return false;
}
}
return true;
};
const markdownTableSplit = (props: SplitProps): SplitResponse => {
@@ -77,6 +81,10 @@ ${mdSplitString}
chunk += `${splitText2Lines[i]}\n`;
}
if (chunk) {
chunks.push(chunk);
}
return {
chunks,
chars: chunks.reduce((sum, chunk) => sum + chunk.length, 0)

View File

@@ -66,6 +66,8 @@ export type SystemEnvType = {
vectorMaxProcess: number;
qaMaxProcess: number;
pgHNSWEfSearch: number;
tokenWorkers: number; // token count max worker
oneapiUrl?: string;
chatApiKey?: string;
};

View File

@@ -170,3 +170,10 @@ export const SearchScoreTypeMap = {
export const CustomCollectionIcon = 'common/linkBlue';
export const LinkCollectionIcon = 'common/linkBlue';
/* source prefix */
export enum DatasetSourceReadTypeEnum {
fileLocal = 'fileLocal',
link = 'link',
externalFile = 'externalFile'
}

View File

@@ -0,0 +1,16 @@
import { DatasetSourceReadTypeEnum, ImportDataSourceEnum } from './constants';
export const rawTextBackupPrefix = 'index,content';
export const importType2ReadType = (type: ImportDataSourceEnum) => {
if (type === ImportDataSourceEnum.csvTable || type === ImportDataSourceEnum.fileLocal) {
return DatasetSourceReadTypeEnum.fileLocal;
}
if (type === ImportDataSourceEnum.fileLink) {
return DatasetSourceReadTypeEnum.link;
}
if (type === ImportDataSourceEnum.externalFile) {
return DatasetSourceReadTypeEnum.externalFile;
}
return DatasetSourceReadTypeEnum.link;
};

View File

@@ -151,12 +151,12 @@ export const readFileContentFromMongo = async ({
teamId,
bucketName,
fileId,
csvFormat = false
isQAImport = false
}: {
teamId: string;
bucketName: `${BucketNameEnum}`;
fileId: string;
csvFormat?: boolean;
isQAImport?: boolean;
}): Promise<{
rawText: string;
filename: string;
@@ -198,7 +198,7 @@ export const readFileContentFromMongo = async ({
const { rawText } = await readFileRawContent({
extension,
csvFormat,
isQAImport,
teamId,
buffer: fileBuffers,
encoding,

View File

@@ -5,6 +5,7 @@ import { addHours } from 'date-fns';
import { WorkerNameEnum, runWorker } from '../../../worker/utils';
import { ReadFileResponse } from '../../../worker/file/type';
import { rawTextBackupPrefix } from '@fastgpt/global/core/dataset/read';
export const initMarkdownText = ({
teamId,
@@ -29,36 +30,44 @@ export const initMarkdownText = ({
export const readFileRawContent = async ({
extension,
csvFormat,
isQAImport,
teamId,
buffer,
encoding,
metadata
}: {
csvFormat?: boolean;
isQAImport?: boolean;
extension: string;
teamId: string;
buffer: Buffer;
encoding: string;
metadata?: Record<string, any>;
}) => {
const result = await runWorker<ReadFileResponse>(WorkerNameEnum.readFile, {
let { rawText, formatText } = await runWorker<ReadFileResponse>(WorkerNameEnum.readFile, {
extension,
csvFormat,
encoding,
buffer
});
// markdown data format
if (['md', 'html', 'docx'].includes(extension)) {
result.rawText = await initMarkdownText({
rawText = await initMarkdownText({
teamId: teamId,
md: result.rawText,
md: rawText,
metadata: metadata
});
}
return result;
if (['csv', 'xlsx'].includes(extension)) {
// qa data
if (isQAImport) {
rawText = rawText || '';
} else {
rawText = formatText || '';
}
}
return { rawText };
};
export const htmlToMarkdown = async (html?: string | null) => {

View File

@@ -77,9 +77,8 @@ export const urlsFetch = async ({
$,
selector
});
console.log('html====', html);
const md = await htmlToMarkdown(html);
console.log('html====', md);
return {
url,

View File

@@ -12,27 +12,34 @@ import { getNanoid } from '@fastgpt/global/common/string/tools';
import { addLog } from '../../system/log';
export const getTiktokenWorker = () => {
if (global.tiktokenWorker) {
return global.tiktokenWorker;
const maxWorkers = global.systemEnv?.tokenWorkers || 20;
if (!global.tiktokenWorkers) {
global.tiktokenWorkers = [];
}
if (global.tiktokenWorkers.length >= maxWorkers) {
return global.tiktokenWorkers[Math.floor(Math.random() * global.tiktokenWorkers.length)];
}
const worker = getWorker(WorkerNameEnum.countGptMessagesTokens);
const i = global.tiktokenWorkers.push({
index: global.tiktokenWorkers.length,
worker,
callbackMap: {}
});
worker.on('message', ({ id, data }: { id: string; data: number }) => {
const callback = global.tiktokenWorker?.callbackMap?.[id];
const callback = global.tiktokenWorkers[i - 1]?.callbackMap?.[id];
if (callback) {
callback?.(data);
delete global.tiktokenWorker.callbackMap[id];
delete global.tiktokenWorkers[i - 1].callbackMap[id];
}
});
global.tiktokenWorker = {
worker,
callbackMap: {}
};
return global.tiktokenWorker;
return global.tiktokenWorkers[i - 1];
};
export const countGptMessagesTokens = (
@@ -44,20 +51,29 @@ export const countGptMessagesTokens = (
const start = Date.now();
const { worker, callbackMap } = getTiktokenWorker();
const id = getNanoid();
const timer = setTimeout(() => {
resolve(0);
console.log('Count token Time out');
resolve(
messages.reduce((sum, item) => {
if (item.content) {
return sum + item.content.length * 0.5;
}
return sum;
}, 0)
);
delete callbackMap[id];
}, 300);
}, 60000);
callbackMap[id] = (data) => {
// 检测是否有内存泄漏
addLog.info(`Count token time: ${Date.now() - start}, token: ${data}`);
// console.log(process.memoryUsage());
resolve(data);
clearTimeout(timer);
// 检测是否有内存泄漏
// addLog.info(`Count token time: ${Date.now() - start}, token: ${data}`);
// console.log(process.memoryUsage());
};
worker.postMessage({

View File

@@ -0,0 +1,99 @@
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
import { DatasetSourceReadTypeEnum } from '@fastgpt/global/core/dataset/constants';
import { readFileContentFromMongo } from '../../common/file/gridfs/controller';
import { urlsFetch } from '../../common/string/cheerio';
import { rawTextBackupPrefix } from '@fastgpt/global/core/dataset/read';
import { parseCsvTable2Chunks } from './training/utils';
import { TextSplitProps, splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import axios from 'axios';
import { readFileRawContent } from '../../common/file/read/utils';
export const readFileRawTextByUrl = async ({ teamId, url }: { teamId: string; url: string }) => {
const response = await axios({
method: 'get',
url: url,
responseType: 'arraybuffer'
});
const extension = url.split('.')?.pop()?.toLowerCase() || '';
const buffer = Buffer.from(response.data, 'binary');
const { rawText } = await readFileRawContent({
extension,
teamId,
buffer,
encoding: 'utf-8'
});
return rawText;
};
/*
fileId - local file, read from mongo
link - request
externalFile = request read
*/
export const readDatasetSourceRawText = async ({
teamId,
type,
sourceId,
isQAImport,
selector
}: {
teamId: string;
type: DatasetSourceReadTypeEnum;
sourceId: string;
isQAImport?: boolean;
selector?: string;
}): Promise<string> => {
if (type === DatasetSourceReadTypeEnum.fileLocal) {
const { rawText } = await readFileContentFromMongo({
teamId,
bucketName: BucketNameEnum.dataset,
fileId: sourceId,
isQAImport
});
return rawText;
} else if (type === DatasetSourceReadTypeEnum.link) {
const result = await urlsFetch({
urlList: [sourceId],
selector
});
return result[0]?.content || '';
} else if (type === DatasetSourceReadTypeEnum.externalFile) {
const rawText = await readFileRawTextByUrl({
teamId,
url: sourceId
});
return rawText;
}
return '';
};
export const rawText2Chunks = ({
rawText,
isQAImport,
chunkLen = 512,
...splitProps
}: {
rawText: string;
isQAImport?: boolean;
} & TextSplitProps) => {
if (isQAImport) {
const { chunks } = parseCsvTable2Chunks(rawText);
return chunks;
}
const { chunks } = splitText2Chunks({
text: rawText,
chunkLen,
...splitProps
});
return chunks.map((item) => ({
q: item,
a: ''
}));
};

View File

@@ -71,7 +71,7 @@ export const dispatchHttp468Request = async (props: HttpRequestProps): Promise<H
chatId,
responseChatItemId,
...variables,
histories: histories.slice(-10),
histories: histories?.slice(-10) || [],
...body,
...dynamicInput
};

View File

@@ -62,7 +62,10 @@ export const valueTypeFormat = (value: any, type?: WorkflowIOValueTypeEnum) => {
return JSON.stringify(value);
}
if (type === 'number') return Number(value);
if (type === 'boolean') return value === 'true' ? true : false;
if (type === 'boolean') {
if (typeof value === 'string') return value === 'true';
return Boolean(value);
}
try {
if (type === WorkflowIOValueTypeEnum.datasetQuote && !Array.isArray(value)) {
return JSON.parse(value);

View File

@@ -13,10 +13,10 @@
"decompress": "^4.2.1",
"domino-ext": "^2.1.4",
"encoding": "^0.1.13",
"fastgpt-js-tiktoken": "^1.0.12",
"file-type": "^19.0.0",
"iconv-lite": "^0.6.3",
"joplin-turndown-plugin-gfm": "^1.0.12",
"js-tiktoken": "^1.0.7",
"json5": "^2.2.3",
"jsonwebtoken": "^9.0.2",
"mammoth": "^1.6.0",

View File

@@ -20,8 +20,9 @@ declare global {
var whisperModel: WhisperModelType;
var reRankModels: ReRankModelItemType[];
var tiktokenWorker: {
var tiktokenWorkers: {
index: number;
worker: Worker;
callbackMap: Record<string, (e: number) => void>;
};
}[];
}

View File

@@ -15,40 +15,45 @@ type TokenType = {
export const readPdfFile = async ({ buffer }: ReadRawTextByBuffer): Promise<ReadFileResponse> => {
const readPDFPage = async (doc: any, pageNo: number) => {
const page = await doc.getPage(pageNo);
const tokenizedText = await page.getTextContent();
try {
const page = await doc.getPage(pageNo);
const tokenizedText = await page.getTextContent();
const viewport = page.getViewport({ scale: 1 });
const pageHeight = viewport.height;
const headerThreshold = pageHeight * 0.95;
const footerThreshold = pageHeight * 0.05;
const viewport = page.getViewport({ scale: 1 });
const pageHeight = viewport.height;
const headerThreshold = pageHeight * 0.95;
const footerThreshold = pageHeight * 0.05;
const pageTexts: TokenType[] = tokenizedText.items.filter((token: TokenType) => {
return (
!token.transform ||
(token.transform[5] < headerThreshold && token.transform[5] > footerThreshold)
);
});
const pageTexts: TokenType[] = tokenizedText.items.filter((token: TokenType) => {
return (
!token.transform ||
(token.transform[5] < headerThreshold && token.transform[5] > footerThreshold)
);
});
// concat empty string 'hasEOL'
for (let i = 0; i < pageTexts.length; i++) {
const item = pageTexts[i];
if (item.str === '' && pageTexts[i - 1]) {
pageTexts[i - 1].hasEOL = item.hasEOL;
pageTexts.splice(i, 1);
i--;
// concat empty string 'hasEOL'
for (let i = 0; i < pageTexts.length; i++) {
const item = pageTexts[i];
if (item.str === '' && pageTexts[i - 1]) {
pageTexts[i - 1].hasEOL = item.hasEOL;
pageTexts.splice(i, 1);
i--;
}
}
page.cleanup();
return pageTexts
.map((token) => {
const paragraphEnd = token.hasEOL && /([。?!.?!\n\r]|(\r\n))$/.test(token.str);
return paragraphEnd ? `${token.str}\n` : token.str;
})
.join('');
} catch (error) {
console.log('pdf read error', error);
return '';
}
page.cleanup();
return pageTexts
.map((token) => {
const paragraphEnd = token.hasEOL && /([。?!.?!\n\r]|(\r\n))$/.test(token.str);
return paragraphEnd ? `${token.str}\n` : token.str;
})
.join('');
};
const loadingTask = pdfjs.getDocument(buffer.buffer);
@@ -58,6 +63,7 @@ export const readPdfFile = async ({ buffer }: ReadRawTextByBuffer): Promise<Read
for (let pageNo = 1; pageNo <= doc.numPages; pageNo++) {
pageTextPromises.push(readPDFPage(doc, pageNo));
}
const pageTexts = await Promise.all(pageTextPromises);
loadingTask.destroy();

View File

@@ -23,25 +23,9 @@ parentPort?.on('message', async (props: ReadRawTextProps<Uint8Array>) => {
case 'pptx':
return readPptxRawText(params);
case 'xlsx':
const xlsxResult = await readXlsxRawText(params);
if (params.csvFormat) {
return {
rawText: xlsxResult.formatText || ''
};
}
return {
rawText: xlsxResult.rawText
};
return readXlsxRawText(params);
case 'csv':
const csvResult = await readCsvRawText(params);
if (params.csvFormat) {
return {
rawText: csvResult.formatText || ''
};
}
return {
rawText: csvResult.rawText
};
return readCsvRawText(params);
default:
return Promise.reject('Only support .txt, .md, .html, .pdf, .docx, pptx, .csv, .xlsx');
}

View File

@@ -1,7 +1,6 @@
import { ReadFileByBufferParams } from '../../common/file/read/type';
export type ReadRawTextProps<T> = {
csvFormat?: boolean;
extension: string;
buffer: T;
encoding: string;

View File

@@ -1,6 +1,6 @@
/* Only the token of gpt-3.5-turbo is used */
import { Tiktoken } from 'js-tiktoken/lite';
import encodingJson from './cl100k_base.json';
import { Tiktoken } from 'fastgpt-js-tiktoken/lite';
import cl100k_base from './cl100k_base.json';
import {
ChatCompletionMessageParam,
ChatCompletionContentPart,
@@ -10,7 +10,7 @@ import {
import { ChatCompletionRequestMessageRoleEnum } from '@fastgpt/global/core/ai/constants';
import { parentPort } from 'worker_threads';
const enc = new Tiktoken(encodingJson);
const enc = new Tiktoken(cl100k_base);
/* count messages tokens */
parentPort?.on(

81
pnpm-lock.yaml generated
View File

@@ -126,6 +126,9 @@ importers:
encoding:
specifier: ^0.1.13
version: 0.1.13
fastgpt-js-tiktoken:
specifier: ^1.0.12
version: registry.npmjs.org/fastgpt-js-tiktoken@1.0.12
file-type:
specifier: ^19.0.0
version: 19.0.0
@@ -135,9 +138,6 @@ importers:
joplin-turndown-plugin-gfm:
specifier: ^1.0.12
version: 1.0.12
js-tiktoken:
specifier: ^1.0.7
version: 1.0.7
json5:
specifier: ^2.2.3
version: 2.2.3
@@ -155,7 +155,7 @@ importers:
version: 1.4.5-lts.1
next:
specifier: 13.5.2
version: 13.5.2(@babel/core@7.24.4)(react-dom@18.2.0)(react@18.2.0)(sass@1.58.3)
version: 13.5.2(react-dom@18.2.0)(react@18.2.0)
nextjs-cors:
specifier: ^2.1.2
version: 2.1.2(next@13.5.2)
@@ -8722,12 +8722,6 @@ packages:
resolution: {integrity: sha512-dwXFwByc/ajSV6m5bcKAPwe4yDDF6D614pxmIi5odytzxRlwqF6nwoiCek80Ixc7Cvma5awClxrzFtxCQvcM8w==}
dev: true
/js-tiktoken@1.0.7:
resolution: {integrity: sha512-biba8u/clw7iesNEWLOLwrNGoBP2lA+hTaBLs/D45pJdUPFXyxD6nhcDVtADChghv4GgyAiMKYMiRx7x6h7Biw==}
dependencies:
base64-js: 1.5.1
dev: false
/js-tokens@4.0.0:
resolution: {integrity: sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ==}
@@ -9933,13 +9927,53 @@ packages:
- '@babel/core'
- babel-plugin-macros
/next@13.5.2(react-dom@18.2.0)(react@18.2.0):
resolution: {integrity: sha512-vog4UhUaMYAzeqfiAAmgB/QWLW7p01/sg+2vn6bqc/CxHFYizMzLv6gjxKzl31EVFkfl/F+GbxlKizlkTE9RdA==}
engines: {node: '>=16.14.0'}
hasBin: true
peerDependencies:
'@opentelemetry/api': ^1.1.0
react: ^18.2.0
react-dom: ^18.2.0
sass: ^1.3.0
peerDependenciesMeta:
'@opentelemetry/api':
optional: true
sass:
optional: true
dependencies:
'@next/env': 13.5.2
'@swc/helpers': 0.5.2
busboy: 1.6.0
caniuse-lite: 1.0.30001603
postcss: 8.4.14
react: 18.2.0
react-dom: 18.2.0(react@18.2.0)
styled-jsx: 5.1.1(react@18.2.0)
watchpack: 2.4.0
zod: 3.21.4
optionalDependencies:
'@next/swc-darwin-arm64': 13.5.2
'@next/swc-darwin-x64': 13.5.2
'@next/swc-linux-arm64-gnu': 13.5.2
'@next/swc-linux-arm64-musl': 13.5.2
'@next/swc-linux-x64-gnu': 13.5.2
'@next/swc-linux-x64-musl': 13.5.2
'@next/swc-win32-arm64-msvc': 13.5.2
'@next/swc-win32-ia32-msvc': 13.5.2
'@next/swc-win32-x64-msvc': 13.5.2
transitivePeerDependencies:
- '@babel/core'
- babel-plugin-macros
dev: false
/nextjs-cors@2.1.2(next@13.5.2):
resolution: {integrity: sha512-2yOVivaaf2ILe4f/qY32hnj3oC77VCOsUQJQfhVMGsXE/YMEWUY2zy78sH9FKUCM7eG42/l3pDofIzMD781XGA==}
peerDependencies:
next: ^8.1.1-canary.54 || ^9.0.0 || ^10.0.0-0 || ^11.0.0 || ^12.0.0 || ^13.0.0
dependencies:
cors: 2.8.5
next: 13.5.2(@babel/core@7.24.4)(react-dom@18.2.0)(react@18.2.0)(sass@1.58.3)
next: 13.5.2(react-dom@18.2.0)(react@18.2.0)
dev: false
/nextjs-node-loader@1.1.5(webpack@5.91.0):
@@ -11725,6 +11759,23 @@ packages:
client-only: 0.0.1
react: 18.2.0
/styled-jsx@5.1.1(react@18.2.0):
resolution: {integrity: sha512-pW7uC1l4mBZ8ugbiZrcIsiIvVx1UmTfw7UkC3Um2tmfUq9Bhk8IiyEIPl6F8agHgjzku6j0xQEZbfA5uSgSaCw==}
engines: {node: '>= 12.0.0'}
peerDependencies:
'@babel/core': '*'
babel-plugin-macros: '*'
react: '>= 16.8.0 || 17.x.x || ^18.0.0-0'
peerDependenciesMeta:
'@babel/core':
optional: true
babel-plugin-macros:
optional: true
dependencies:
client-only: 0.0.1
react: 18.2.0
dev: false
/stylis@4.2.0:
resolution: {integrity: sha512-Orov6g6BB1sDfYgzWfTHDOxamtX1bE/zo104Dh9e6fqJ3PooipYyfJ0pUmrZO2wAvO8YbEyeFrkV91XTsGMSrw==}
dev: false
@@ -12799,3 +12850,11 @@ packages:
engines: {node: '>=0.8'}
hasBin: true
dev: false
registry.npmjs.org/fastgpt-js-tiktoken@1.0.12:
resolution: {integrity: sha512-93UQM9h267PFQqnaJjcc+tqbKRZuipRbi+ASxVcE1FBzXOVb4GKfOMlsxXKCsSDdP+Luv8Fgul7F3HXKITXjYQ==, registry: https://registry.npmmirror.com/, tarball: https://registry.npmjs.org/fastgpt-js-tiktoken/-/fastgpt-js-tiktoken-1.0.12.tgz}
name: fastgpt-js-tiktoken
version: 1.0.12
dependencies:
base64-js: 1.5.1
dev: false

View File

@@ -6,7 +6,8 @@
"openapiPrefix": "fastgpt",
"vectorMaxProcess": 15,
"qaMaxProcess": 15,
"pgHNSWEfSearch": 100
"pgHNSWEfSearch": 100,
"tokenWorkers": 20
},
"llmModels": [
{

View File

@@ -1,6 +1,7 @@
import { PushDatasetDataChunkProps } from '@fastgpt/global/core/dataset/api';
import {
DatasetSearchModeEnum,
DatasetSourceReadTypeEnum,
DatasetTypeEnum,
ImportDataSourceEnum,
TrainingModeEnum
@@ -75,22 +76,3 @@ export type SearchTestResponse = {
};
/* =========== training =========== */
export type PostPreviewFilesChunksProps = {
type: ImportDataSourceEnum;
sourceId: string;
chunkSize: number;
overlapRatio: number;
customSplitChar?: string;
};
export type PostPreviewFilesChunksResponse = {
fileId: string;
rawTextLength: number;
chunks: string[];
}[];
export type PostPreviewTableChunksResponse = {
fileId: string;
totalChunks: number;
chunks: { q: string; a: string; chunkIndex: number }[];
errorText?: string;
}[];

View File

@@ -0,0 +1,18 @@
import { addLog } from '@fastgpt/service/common/system/log';
import { NextResponse } from 'next/server';
import type { NextRequest } from 'next/server';
export function middleware(request: NextRequest) {
const response = NextResponse.next();
addLog.info(`Request URL: ${request.url}`, {
body: request.body
});
return response;
}
// See "Matching Paths" below to learn more
export const config = {
matcher: '/api/:path*'
};

View File

@@ -1,41 +1,50 @@
/*
Read db file content and response 3000 words
*/
import type { NextApiRequest, NextApiResponse } from 'next';
import type { NextApiResponse } from 'next';
import { jsonRes } from '@fastgpt/service/common/response';
import { connectToDatabase } from '@/service/mongo';
import { readFileContentFromMongo } from '@fastgpt/service/common/file/gridfs/controller';
import { authFile } from '@fastgpt/service/support/permission/auth/file';
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
import { NextAPI } from '@/service/middle/entry';
import { DatasetSourceReadTypeEnum } from '@fastgpt/global/core/dataset/constants';
import { readDatasetSourceRawText } from '@fastgpt/service/core/dataset/read';
import { ApiRequestProps } from '@fastgpt/service/type/next';
import { authCert } from '@fastgpt/service/support/permission/auth/common';
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
await connectToDatabase();
const { fileId, csvFormat } = req.body as { fileId: string; csvFormat?: boolean };
export type PreviewContextProps = {
type: DatasetSourceReadTypeEnum;
sourceId: string;
isQAImport?: boolean;
selector?: string;
};
if (!fileId) {
throw new Error('fileId is empty');
}
async function handler(req: ApiRequestProps<PreviewContextProps>, res: NextApiResponse<any>) {
const { type, sourceId, isQAImport, selector } = req.body;
const { teamId } = await authFile({ req, authToken: true, fileId });
const { rawText } = await readFileContentFromMongo({
teamId,
bucketName: BucketNameEnum.dataset,
fileId,
csvFormat
});
jsonRes(res, {
data: {
previewContent: rawText.slice(0, 3000),
totalLength: rawText.length
}
});
} catch (error) {
jsonRes(res, {
code: 500,
error
});
if (!sourceId) {
throw new Error('fileId is empty');
}
const { teamId } = await (async () => {
if (type === DatasetSourceReadTypeEnum.fileLocal) {
return authFile({ req, authToken: true, authApiKey: true, fileId: sourceId });
}
return authCert({ req, authApiKey: true, authToken: true });
})();
const rawText = await readDatasetSourceRawText({
teamId,
type,
sourceId: sourceId,
isQAImport,
selector
});
jsonRes(res, {
data: {
previewContent: rawText.slice(0, 3000),
totalLength: rawText.length
}
});
}
export default NextAPI(handler);

View File

@@ -0,0 +1,41 @@
import type { ApiRequestProps, ApiResponseType } from '@fastgpt/service/type/next';
import { NextAPI } from '@/service/middle/entry';
import { authCert } from '@fastgpt/service/support/permission/auth/common';
import { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type';
import { countGptMessagesTokens } from '@fastgpt/service/common/string/tiktoken';
export type tokenQuery = {};
export type tokenBody = {
messages: ChatCompletionMessageParam[];
};
export type tokenResponse = {};
async function handler(
req: ApiRequestProps<tokenBody, tokenQuery>,
res: ApiResponseType<any>
): Promise<tokenResponse> {
await authCert({ req, authRoot: true });
const start = Date.now();
const tokens = await countGptMessagesTokens(req.body.messages);
return {
tokens,
time: Date.now() - start,
memory: process.memoryUsage()
};
}
export default NextAPI(handler);
export const config = {
api: {
bodyParser: {
sizeLimit: '20mb'
},
responseLimit: '20mb'
}
};

View File

@@ -19,6 +19,7 @@ import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants'
import { getLLMModel, getVectorModel } from '@fastgpt/service/core/ai/model';
import { parseCsvTable2Chunks } from '@fastgpt/service/core/dataset/training/utils';
import { startTrainingQueue } from '@/service/core/dataset/training/utils';
import { rawText2Chunks } from '@fastgpt/service/core/dataset/read';
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
const { datasetId, parentId, fileId } = req.body as FileIdCreateDatasetCollectionParams;
@@ -39,10 +40,15 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
const { rawText, filename } = await readFileContentFromMongo({
teamId,
bucketName: BucketNameEnum.dataset,
fileId
fileId,
isQAImport: true
});
console.log(rawText);
// 2. split chunks
const { chunks = [] } = parseCsvTable2Chunks(rawText);
const chunks = rawText2Chunks({
rawText,
isQAImport: true
});
// 3. auth limit
await checkDatasetLimit({

View File

@@ -22,6 +22,7 @@ import { getLLMModel, getVectorModel } from '@fastgpt/service/core/ai/model';
import { hashStr } from '@fastgpt/global/common/string/tools';
import { startTrainingQueue } from '@/service/core/dataset/training/utils';
import { MongoRawTextBuffer } from '@fastgpt/service/common/buffer/rawText/schema';
import { rawText2Chunks } from '@fastgpt/service/core/dataset/read';
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
const {
@@ -51,8 +52,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
fileId
});
// 2. split chunks
const { chunks } = splitText2Chunks({
text: rawText,
const chunks = rawText2Chunks({
rawText,
chunkLen: chunkSize,
overlapRatio: trainingType === TrainingModeEnum.chunk ? 0.2 : 0,
customReg: chunkSplitter ? [chunkSplitter] : []
@@ -110,8 +111,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
trainingMode: trainingType,
prompt: qaPrompt,
billId,
data: chunks.map((text, index) => ({
q: text,
data: chunks.map((item, index) => ({
...item,
chunkIndex: index
})),
session

View File

@@ -1,79 +1,60 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@fastgpt/service/common/response';
import { connectToDatabase } from '@/service/mongo';
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
import type { NextApiResponse } from 'next';
import { authFile } from '@fastgpt/service/support/permission/auth/file';
import { PostPreviewFilesChunksProps } from '@/global/core/dataset/api';
import { readFileContentFromMongo } from '@fastgpt/service/common/file/gridfs/controller';
import { splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import { ImportDataSourceEnum } from '@fastgpt/global/core/dataset/constants';
import { parseCsvTable2Chunks } from '@fastgpt/service/core/dataset/training/utils';
import { DatasetSourceReadTypeEnum } from '@fastgpt/global/core/dataset/constants';
import { rawText2Chunks, readDatasetSourceRawText } from '@fastgpt/service/core/dataset/read';
import { authCert } from '@fastgpt/service/support/permission/auth/common';
import { NextAPI } from '@/service/middle/entry';
import { ApiRequestProps } from '@fastgpt/service/type/next';
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
await connectToDatabase();
export type PostPreviewFilesChunksProps = {
type: DatasetSourceReadTypeEnum;
sourceId: string;
chunkSize: number;
overlapRatio: number;
customSplitChar?: string;
selector?: string;
isQAImport?: boolean;
};
export type PreviewChunksResponse = {
q: string;
a: string;
}[];
const { type, sourceId, chunkSize, customSplitChar, overlapRatio } =
req.body as PostPreviewFilesChunksProps;
async function handler(
req: ApiRequestProps<PostPreviewFilesChunksProps>,
res: NextApiResponse<any>
): Promise<PreviewChunksResponse> {
const { type, sourceId, chunkSize, customSplitChar, overlapRatio, selector, isQAImport } =
req.body;
if (!sourceId) {
throw new Error('fileIdList is empty');
}
if (chunkSize > 30000) {
throw new Error('chunkSize is too large, should be less than 30000');
}
const { chunks } = await (async () => {
if (type === ImportDataSourceEnum.fileLocal) {
const { file, teamId } = await authFile({ req, authToken: true, fileId: sourceId });
const fileId = String(file._id);
const { rawText } = await readFileContentFromMongo({
teamId,
bucketName: BucketNameEnum.dataset,
fileId,
csvFormat: true
});
// split chunks (5 chunk)
const { chunks } = splitText2Chunks({
text: rawText,
chunkLen: chunkSize,
overlapRatio,
customReg: customSplitChar ? [customSplitChar] : []
});
return {
chunks: chunks.map((item) => ({
q: item,
a: ''
}))
};
}
if (type === ImportDataSourceEnum.csvTable) {
const { file, teamId } = await authFile({ req, authToken: true, fileId: sourceId });
const fileId = String(file._id);
const { rawText } = await readFileContentFromMongo({
teamId,
bucketName: BucketNameEnum.dataset,
fileId,
csvFormat: false
});
const { chunks } = parseCsvTable2Chunks(rawText);
return {
chunks: chunks || []
};
}
return { chunks: [] };
})();
jsonRes<{ q: string; a: string }[]>(res, {
data: chunks.slice(0, 5)
});
} catch (error) {
jsonRes(res, {
code: 500,
error
});
if (!sourceId) {
throw new Error('sourceId is empty');
}
if (chunkSize > 30000) {
throw new Error('chunkSize is too large, should be less than 30000');
}
const { teamId } = await (async () => {
if (type === DatasetSourceReadTypeEnum.fileLocal) {
return authFile({ req, authToken: true, authApiKey: true, fileId: sourceId });
}
return authCert({ req, authApiKey: true, authToken: true });
})();
const rawText = await readDatasetSourceRawText({
teamId,
type,
sourceId: sourceId,
selector,
isQAImport
});
return rawText2Chunks({
rawText,
chunkLen: chunkSize,
overlapRatio,
customReg: customSplitChar ? [customSplitChar] : [],
isQAImport: isQAImport
}).slice(0, 5);
}
export default NextAPI(handler);

View File

@@ -16,8 +16,10 @@ import { useAppStore } from '@/web/core/app/store/useAppStore';
import PermissionIconText from '@/components/support/permission/IconText';
import { useUserStore } from '@/web/support/user/useUserStore';
import { useI18n } from '@/web/context/I18n';
import { useTranslation } from 'next-i18next';
const MyApps = () => {
const { t } = useTranslation();
const { toast } = useToast();
const { appT, commonT } = useI18n();
@@ -46,12 +48,12 @@ const MyApps = () => {
loadMyApps(true);
} catch (err: any) {
toast({
title: err?.message || '删除失败',
title: err?.message || t('common.Delete Failed'),
status: 'error'
});
}
},
[toast, loadMyApps]
[toast, loadMyApps, t]
);
/* 加载模型 */

View File

@@ -10,6 +10,7 @@ import { useToast } from '@fastgpt/web/hooks/useToast';
import { getErrText } from '@fastgpt/global/common/error/utils';
import { useContextSelector } from 'use-context-selector';
import { DatasetImportContext } from '../Context';
import { importType2ReadType } from '@fastgpt/global/core/dataset/read';
const PreviewChunks = ({
previewSource,
@@ -27,19 +28,7 @@ const PreviewChunks = ({
const { data = [], isLoading } = useQuery(
['previewSource'],
() => {
if (
importSource === ImportDataSourceEnum.fileLocal ||
importSource === ImportDataSourceEnum.csvTable ||
importSource === ImportDataSourceEnum.fileLink
) {
return getPreviewChunks({
type: importSource,
sourceId: previewSource.dbFileId || previewSource.link || '',
chunkSize,
overlapRatio: chunkOverlapRatio,
customSplitChar: processParamsForm.getValues('customSplitChar')
});
} else if (importSource === ImportDataSourceEnum.fileCustom) {
if (importSource === ImportDataSourceEnum.fileCustom) {
const customSplitChar = processParamsForm.getValues('customSplitChar');
const { chunks } = splitText2Chunks({
text: previewSource.rawText || '',
@@ -52,7 +41,27 @@ const PreviewChunks = ({
a: ''
}));
}
return [];
if (importSource === ImportDataSourceEnum.csvTable) {
return getPreviewChunks({
type: importType2ReadType(importSource),
sourceId: previewSource.dbFileId || previewSource.link || previewSource.sourceUrl || '',
chunkSize,
overlapRatio: chunkOverlapRatio,
customSplitChar: processParamsForm.getValues('customSplitChar'),
selector: processParamsForm.getValues('webSelector'),
isQAImport: true
});
}
return getPreviewChunks({
type: importType2ReadType(importSource),
sourceId: previewSource.dbFileId || previewSource.link || previewSource.sourceUrl || '',
chunkSize,
overlapRatio: chunkOverlapRatio,
customSplitChar: processParamsForm.getValues('customSplitChar'),
selector: processParamsForm.getValues('webSelector'),
isQAImport: false
});
},
{
onError(err) {

View File

@@ -9,6 +9,7 @@ import { useToast } from '@fastgpt/web/hooks/useToast';
import { getErrText } from '@fastgpt/global/common/error/utils';
import { useContextSelector } from 'use-context-selector';
import { DatasetImportContext } from '../Context';
import { importType2ReadType } from '@fastgpt/global/core/dataset/read';
const PreviewRawText = ({
previewSource,
@@ -18,32 +19,30 @@ const PreviewRawText = ({
onClose: () => void;
}) => {
const { toast } = useToast();
const { importSource } = useContextSelector(DatasetImportContext, (v) => v);
const { importSource, processParamsForm } = useContextSelector(DatasetImportContext, (v) => v);
const { data, isLoading } = useQuery(
['previewSource', previewSource?.dbFileId],
['previewSource', previewSource.dbFileId, previewSource.link, previewSource.sourceUrl],
() => {
if (importSource === ImportDataSourceEnum.fileLocal && previewSource.dbFileId) {
return getPreviewFileContent({
fileId: previewSource.dbFileId,
csvFormat: true
});
if (importSource === ImportDataSourceEnum.fileCustom && previewSource.rawText) {
return {
previewContent: previewSource.rawText.slice(0, 3000)
};
}
if (importSource === ImportDataSourceEnum.csvTable && previewSource.dbFileId) {
return getPreviewFileContent({
fileId: previewSource.dbFileId,
csvFormat: false
type: importType2ReadType(importSource),
sourceId: previewSource.dbFileId,
isQAImport: true
});
}
if (importSource === ImportDataSourceEnum.fileCustom) {
return {
previewContent: (previewSource.rawText || '').slice(0, 3000)
};
}
return {
previewContent: ''
};
return getPreviewFileContent({
type: importType2ReadType(importSource),
sourceId: previewSource.dbFileId || previewSource.link || previewSource.sourceUrl || '',
isQAImport: false,
selector: processParamsForm.getValues('webSelector')
});
},
{
onError(err) {

View File

@@ -162,7 +162,7 @@ const CustomLinkInput = () => {
{commonT('Add new')}
</Button>
<Button
isDisabled={list.length === 0}
isDisabled={list.filter((item) => !!item.sourceUrl).length === 0}
onClick={handleSubmit((data) => {
setSources(
data.list

View File

@@ -23,7 +23,7 @@ const LinkCollection = () => {
return (
<>
{activeStep === 0 && <CustomLinkImport />}
{activeStep === 1 && <DataProcess showPreviewChunks={false} />}
{activeStep === 1 && <DataProcess showPreviewChunks />}
{activeStep === 2 && <Upload />}
</>
);

View File

@@ -29,7 +29,8 @@ const FileLocal = () => {
export default React.memo(FileLocal);
const csvTemplate = `"第一列内容","第二列内容"
const csvTemplate = `index,content
"第一列内容","第二列内容"
"必填列","可选列。CSV 中请注意内容不能包含双引号,双引号是列分割符号"
"只会将第一和第二列内容导入,其余列会被忽略",""
"结合人工智能的演进历程,AIGC的发展大致可以分为三个阶段即:早期萌芽阶段(20世纪50年代至90年代中期)、沉淀积累阶段(20世纪90年代中期至21世纪10年代中期),以及快速发展展阶段(21世纪10年代中期至今)。",""

View File

@@ -123,7 +123,9 @@ export async function checkInvalidDatasetData(start: Date, end: Date) {
continue;
}
} catch (error) {}
console.log(++index);
if (++index % 100 === 0) {
console.log(index);
}
}
}

View File

@@ -1,3 +1,4 @@
import type { PreviewContextProps } from '@/pages/api/common/file/previewContent';
import { GET, POST } from '@/web/common/api/request';
import type { UploadImgProps } from '@fastgpt/global/common/file/api.d';
import { AxiosProgressEvent } from 'axios';
@@ -16,7 +17,7 @@ export const postUploadFiles = (
}
});
export const getPreviewFileContent = (data: { fileId: string; csvFormat: boolean }) =>
export const getPreviewFileContent = (data: PreviewContextProps) =>
POST<{
previewContent: string;
totalLength: number;

View File

@@ -22,7 +22,6 @@ import type {
import type {
GetTrainingQueueProps,
GetTrainingQueueResponse,
PostPreviewFilesChunksProps,
SearchTestProps,
SearchTestResponse
} from '@/global/core/dataset/api.d';
@@ -41,6 +40,10 @@ import type { DatasetCollectionsListItemType } from '@/global/core/dataset/type.
import { PagingData } from '@/types';
import type { getDatasetTrainingQueueResponse } from '@/pages/api/core/dataset/training/getDatasetTrainingQueue';
import type { rebuildEmbeddingBody } from '@/pages/api/core/dataset/training/rebuildEmbedding';
import type {
PostPreviewFilesChunksProps,
PreviewChunksResponse
} from '@/pages/api/core/dataset/file/getPreviewChunks';
/* ======================== dataset ======================= */
export const getDatasets = (data: { parentId?: string; type?: DatasetTypeEnum }) =>
@@ -139,7 +142,7 @@ export const getDatasetTrainingQueue = (datasetId: string) =>
});
export const getPreviewChunks = (data: PostPreviewFilesChunksProps) =>
POST<{ q: string; a: string }[]>('/core/dataset/file/getPreviewChunks', data);
POST<PreviewChunksResponse>('/core/dataset/file/getPreviewChunks', data);
/* ================== file ======================== */
export const getFileViewUrl = (fileId: string) =>