mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-22 20:37:48 +00:00
External dataset (#1497)
* perf: read rawText and chunk code * perf: read raw text * perf: read rawtext * perf: token count * log
This commit is contained in:
@@ -6,7 +6,8 @@
|
||||
"openapiPrefix": "fastgpt",
|
||||
"vectorMaxProcess": 15,
|
||||
"qaMaxProcess": 15,
|
||||
"pgHNSWEfSearch": 100
|
||||
"pgHNSWEfSearch": 100,
|
||||
"tokenWorkers": 20
|
||||
},
|
||||
"llmModels": [
|
||||
{
|
||||
|
20
projects/app/src/global/core/dataset/api.d.ts
vendored
20
projects/app/src/global/core/dataset/api.d.ts
vendored
@@ -1,6 +1,7 @@
|
||||
import { PushDatasetDataChunkProps } from '@fastgpt/global/core/dataset/api';
|
||||
import {
|
||||
DatasetSearchModeEnum,
|
||||
DatasetSourceReadTypeEnum,
|
||||
DatasetTypeEnum,
|
||||
ImportDataSourceEnum,
|
||||
TrainingModeEnum
|
||||
@@ -75,22 +76,3 @@ export type SearchTestResponse = {
|
||||
};
|
||||
|
||||
/* =========== training =========== */
|
||||
export type PostPreviewFilesChunksProps = {
|
||||
type: ImportDataSourceEnum;
|
||||
sourceId: string;
|
||||
chunkSize: number;
|
||||
overlapRatio: number;
|
||||
customSplitChar?: string;
|
||||
};
|
||||
|
||||
export type PostPreviewFilesChunksResponse = {
|
||||
fileId: string;
|
||||
rawTextLength: number;
|
||||
chunks: string[];
|
||||
}[];
|
||||
export type PostPreviewTableChunksResponse = {
|
||||
fileId: string;
|
||||
totalChunks: number;
|
||||
chunks: { q: string; a: string; chunkIndex: number }[];
|
||||
errorText?: string;
|
||||
}[];
|
||||
|
18
projects/app/src/middleware.ts
Normal file
18
projects/app/src/middleware.ts
Normal file
@@ -0,0 +1,18 @@
|
||||
import { addLog } from '@fastgpt/service/common/system/log';
|
||||
import { NextResponse } from 'next/server';
|
||||
import type { NextRequest } from 'next/server';
|
||||
|
||||
export function middleware(request: NextRequest) {
|
||||
const response = NextResponse.next();
|
||||
|
||||
addLog.info(`Request URL: ${request.url}`, {
|
||||
body: request.body
|
||||
});
|
||||
|
||||
return response;
|
||||
}
|
||||
|
||||
// See "Matching Paths" below to learn more
|
||||
export const config = {
|
||||
matcher: '/api/:path*'
|
||||
};
|
@@ -1,41 +1,50 @@
|
||||
/*
|
||||
Read db file content and response 3000 words
|
||||
*/
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import type { NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@fastgpt/service/common/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { readFileContentFromMongo } from '@fastgpt/service/common/file/gridfs/controller';
|
||||
import { authFile } from '@fastgpt/service/support/permission/auth/file';
|
||||
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
|
||||
import { NextAPI } from '@/service/middle/entry';
|
||||
import { DatasetSourceReadTypeEnum } from '@fastgpt/global/core/dataset/constants';
|
||||
import { readDatasetSourceRawText } from '@fastgpt/service/core/dataset/read';
|
||||
import { ApiRequestProps } from '@fastgpt/service/type/next';
|
||||
import { authCert } from '@fastgpt/service/support/permission/auth/common';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
await connectToDatabase();
|
||||
const { fileId, csvFormat } = req.body as { fileId: string; csvFormat?: boolean };
|
||||
export type PreviewContextProps = {
|
||||
type: DatasetSourceReadTypeEnum;
|
||||
sourceId: string;
|
||||
isQAImport?: boolean;
|
||||
selector?: string;
|
||||
};
|
||||
|
||||
if (!fileId) {
|
||||
throw new Error('fileId is empty');
|
||||
}
|
||||
async function handler(req: ApiRequestProps<PreviewContextProps>, res: NextApiResponse<any>) {
|
||||
const { type, sourceId, isQAImport, selector } = req.body;
|
||||
|
||||
const { teamId } = await authFile({ req, authToken: true, fileId });
|
||||
|
||||
const { rawText } = await readFileContentFromMongo({
|
||||
teamId,
|
||||
bucketName: BucketNameEnum.dataset,
|
||||
fileId,
|
||||
csvFormat
|
||||
});
|
||||
|
||||
jsonRes(res, {
|
||||
data: {
|
||||
previewContent: rawText.slice(0, 3000),
|
||||
totalLength: rawText.length
|
||||
}
|
||||
});
|
||||
} catch (error) {
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error
|
||||
});
|
||||
if (!sourceId) {
|
||||
throw new Error('fileId is empty');
|
||||
}
|
||||
|
||||
const { teamId } = await (async () => {
|
||||
if (type === DatasetSourceReadTypeEnum.fileLocal) {
|
||||
return authFile({ req, authToken: true, authApiKey: true, fileId: sourceId });
|
||||
}
|
||||
return authCert({ req, authApiKey: true, authToken: true });
|
||||
})();
|
||||
|
||||
const rawText = await readDatasetSourceRawText({
|
||||
teamId,
|
||||
type,
|
||||
sourceId: sourceId,
|
||||
isQAImport,
|
||||
selector
|
||||
});
|
||||
|
||||
jsonRes(res, {
|
||||
data: {
|
||||
previewContent: rawText.slice(0, 3000),
|
||||
totalLength: rawText.length
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
export default NextAPI(handler);
|
||||
|
41
projects/app/src/pages/api/core/ai/token.ts
Normal file
41
projects/app/src/pages/api/core/ai/token.ts
Normal file
@@ -0,0 +1,41 @@
|
||||
import type { ApiRequestProps, ApiResponseType } from '@fastgpt/service/type/next';
|
||||
import { NextAPI } from '@/service/middle/entry';
|
||||
import { authCert } from '@fastgpt/service/support/permission/auth/common';
|
||||
import { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type';
|
||||
import { countGptMessagesTokens } from '@fastgpt/service/common/string/tiktoken';
|
||||
|
||||
export type tokenQuery = {};
|
||||
|
||||
export type tokenBody = {
|
||||
messages: ChatCompletionMessageParam[];
|
||||
};
|
||||
|
||||
export type tokenResponse = {};
|
||||
|
||||
async function handler(
|
||||
req: ApiRequestProps<tokenBody, tokenQuery>,
|
||||
res: ApiResponseType<any>
|
||||
): Promise<tokenResponse> {
|
||||
await authCert({ req, authRoot: true });
|
||||
const start = Date.now();
|
||||
|
||||
const tokens = await countGptMessagesTokens(req.body.messages);
|
||||
|
||||
return {
|
||||
tokens,
|
||||
time: Date.now() - start,
|
||||
|
||||
memory: process.memoryUsage()
|
||||
};
|
||||
}
|
||||
|
||||
export default NextAPI(handler);
|
||||
|
||||
export const config = {
|
||||
api: {
|
||||
bodyParser: {
|
||||
sizeLimit: '20mb'
|
||||
},
|
||||
responseLimit: '20mb'
|
||||
}
|
||||
};
|
@@ -19,6 +19,7 @@ import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants'
|
||||
import { getLLMModel, getVectorModel } from '@fastgpt/service/core/ai/model';
|
||||
import { parseCsvTable2Chunks } from '@fastgpt/service/core/dataset/training/utils';
|
||||
import { startTrainingQueue } from '@/service/core/dataset/training/utils';
|
||||
import { rawText2Chunks } from '@fastgpt/service/core/dataset/read';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
const { datasetId, parentId, fileId } = req.body as FileIdCreateDatasetCollectionParams;
|
||||
@@ -39,10 +40,15 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
const { rawText, filename } = await readFileContentFromMongo({
|
||||
teamId,
|
||||
bucketName: BucketNameEnum.dataset,
|
||||
fileId
|
||||
fileId,
|
||||
isQAImport: true
|
||||
});
|
||||
console.log(rawText);
|
||||
// 2. split chunks
|
||||
const { chunks = [] } = parseCsvTable2Chunks(rawText);
|
||||
const chunks = rawText2Chunks({
|
||||
rawText,
|
||||
isQAImport: true
|
||||
});
|
||||
|
||||
// 3. auth limit
|
||||
await checkDatasetLimit({
|
||||
|
@@ -22,6 +22,7 @@ import { getLLMModel, getVectorModel } from '@fastgpt/service/core/ai/model';
|
||||
import { hashStr } from '@fastgpt/global/common/string/tools';
|
||||
import { startTrainingQueue } from '@/service/core/dataset/training/utils';
|
||||
import { MongoRawTextBuffer } from '@fastgpt/service/common/buffer/rawText/schema';
|
||||
import { rawText2Chunks } from '@fastgpt/service/core/dataset/read';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
const {
|
||||
@@ -51,8 +52,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
fileId
|
||||
});
|
||||
// 2. split chunks
|
||||
const { chunks } = splitText2Chunks({
|
||||
text: rawText,
|
||||
const chunks = rawText2Chunks({
|
||||
rawText,
|
||||
chunkLen: chunkSize,
|
||||
overlapRatio: trainingType === TrainingModeEnum.chunk ? 0.2 : 0,
|
||||
customReg: chunkSplitter ? [chunkSplitter] : []
|
||||
@@ -110,8 +111,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
trainingMode: trainingType,
|
||||
prompt: qaPrompt,
|
||||
billId,
|
||||
data: chunks.map((text, index) => ({
|
||||
q: text,
|
||||
data: chunks.map((item, index) => ({
|
||||
...item,
|
||||
chunkIndex: index
|
||||
})),
|
||||
session
|
||||
|
@@ -1,79 +1,60 @@
|
||||
import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@fastgpt/service/common/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
|
||||
import type { NextApiResponse } from 'next';
|
||||
import { authFile } from '@fastgpt/service/support/permission/auth/file';
|
||||
import { PostPreviewFilesChunksProps } from '@/global/core/dataset/api';
|
||||
import { readFileContentFromMongo } from '@fastgpt/service/common/file/gridfs/controller';
|
||||
import { splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
|
||||
import { ImportDataSourceEnum } from '@fastgpt/global/core/dataset/constants';
|
||||
import { parseCsvTable2Chunks } from '@fastgpt/service/core/dataset/training/utils';
|
||||
import { DatasetSourceReadTypeEnum } from '@fastgpt/global/core/dataset/constants';
|
||||
import { rawText2Chunks, readDatasetSourceRawText } from '@fastgpt/service/core/dataset/read';
|
||||
import { authCert } from '@fastgpt/service/support/permission/auth/common';
|
||||
import { NextAPI } from '@/service/middle/entry';
|
||||
import { ApiRequestProps } from '@fastgpt/service/type/next';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
await connectToDatabase();
|
||||
export type PostPreviewFilesChunksProps = {
|
||||
type: DatasetSourceReadTypeEnum;
|
||||
sourceId: string;
|
||||
chunkSize: number;
|
||||
overlapRatio: number;
|
||||
customSplitChar?: string;
|
||||
selector?: string;
|
||||
isQAImport?: boolean;
|
||||
};
|
||||
export type PreviewChunksResponse = {
|
||||
q: string;
|
||||
a: string;
|
||||
}[];
|
||||
|
||||
const { type, sourceId, chunkSize, customSplitChar, overlapRatio } =
|
||||
req.body as PostPreviewFilesChunksProps;
|
||||
async function handler(
|
||||
req: ApiRequestProps<PostPreviewFilesChunksProps>,
|
||||
res: NextApiResponse<any>
|
||||
): Promise<PreviewChunksResponse> {
|
||||
const { type, sourceId, chunkSize, customSplitChar, overlapRatio, selector, isQAImport } =
|
||||
req.body;
|
||||
|
||||
if (!sourceId) {
|
||||
throw new Error('fileIdList is empty');
|
||||
}
|
||||
if (chunkSize > 30000) {
|
||||
throw new Error('chunkSize is too large, should be less than 30000');
|
||||
}
|
||||
|
||||
const { chunks } = await (async () => {
|
||||
if (type === ImportDataSourceEnum.fileLocal) {
|
||||
const { file, teamId } = await authFile({ req, authToken: true, fileId: sourceId });
|
||||
const fileId = String(file._id);
|
||||
|
||||
const { rawText } = await readFileContentFromMongo({
|
||||
teamId,
|
||||
bucketName: BucketNameEnum.dataset,
|
||||
fileId,
|
||||
csvFormat: true
|
||||
});
|
||||
// split chunks (5 chunk)
|
||||
const { chunks } = splitText2Chunks({
|
||||
text: rawText,
|
||||
chunkLen: chunkSize,
|
||||
overlapRatio,
|
||||
customReg: customSplitChar ? [customSplitChar] : []
|
||||
});
|
||||
|
||||
return {
|
||||
chunks: chunks.map((item) => ({
|
||||
q: item,
|
||||
a: ''
|
||||
}))
|
||||
};
|
||||
}
|
||||
if (type === ImportDataSourceEnum.csvTable) {
|
||||
const { file, teamId } = await authFile({ req, authToken: true, fileId: sourceId });
|
||||
const fileId = String(file._id);
|
||||
const { rawText } = await readFileContentFromMongo({
|
||||
teamId,
|
||||
bucketName: BucketNameEnum.dataset,
|
||||
fileId,
|
||||
csvFormat: false
|
||||
});
|
||||
const { chunks } = parseCsvTable2Chunks(rawText);
|
||||
|
||||
return {
|
||||
chunks: chunks || []
|
||||
};
|
||||
}
|
||||
return { chunks: [] };
|
||||
})();
|
||||
|
||||
jsonRes<{ q: string; a: string }[]>(res, {
|
||||
data: chunks.slice(0, 5)
|
||||
});
|
||||
} catch (error) {
|
||||
jsonRes(res, {
|
||||
code: 500,
|
||||
error
|
||||
});
|
||||
if (!sourceId) {
|
||||
throw new Error('sourceId is empty');
|
||||
}
|
||||
if (chunkSize > 30000) {
|
||||
throw new Error('chunkSize is too large, should be less than 30000');
|
||||
}
|
||||
|
||||
const { teamId } = await (async () => {
|
||||
if (type === DatasetSourceReadTypeEnum.fileLocal) {
|
||||
return authFile({ req, authToken: true, authApiKey: true, fileId: sourceId });
|
||||
}
|
||||
return authCert({ req, authApiKey: true, authToken: true });
|
||||
})();
|
||||
|
||||
const rawText = await readDatasetSourceRawText({
|
||||
teamId,
|
||||
type,
|
||||
sourceId: sourceId,
|
||||
selector,
|
||||
isQAImport
|
||||
});
|
||||
|
||||
return rawText2Chunks({
|
||||
rawText,
|
||||
chunkLen: chunkSize,
|
||||
overlapRatio,
|
||||
customReg: customSplitChar ? [customSplitChar] : [],
|
||||
isQAImport: isQAImport
|
||||
}).slice(0, 5);
|
||||
}
|
||||
export default NextAPI(handler);
|
||||
|
@@ -16,8 +16,10 @@ import { useAppStore } from '@/web/core/app/store/useAppStore';
|
||||
import PermissionIconText from '@/components/support/permission/IconText';
|
||||
import { useUserStore } from '@/web/support/user/useUserStore';
|
||||
import { useI18n } from '@/web/context/I18n';
|
||||
import { useTranslation } from 'next-i18next';
|
||||
|
||||
const MyApps = () => {
|
||||
const { t } = useTranslation();
|
||||
const { toast } = useToast();
|
||||
const { appT, commonT } = useI18n();
|
||||
|
||||
@@ -46,12 +48,12 @@ const MyApps = () => {
|
||||
loadMyApps(true);
|
||||
} catch (err: any) {
|
||||
toast({
|
||||
title: err?.message || '删除失败',
|
||||
title: err?.message || t('common.Delete Failed'),
|
||||
status: 'error'
|
||||
});
|
||||
}
|
||||
},
|
||||
[toast, loadMyApps]
|
||||
[toast, loadMyApps, t]
|
||||
);
|
||||
|
||||
/* 加载模型 */
|
||||
|
@@ -10,6 +10,7 @@ import { useToast } from '@fastgpt/web/hooks/useToast';
|
||||
import { getErrText } from '@fastgpt/global/common/error/utils';
|
||||
import { useContextSelector } from 'use-context-selector';
|
||||
import { DatasetImportContext } from '../Context';
|
||||
import { importType2ReadType } from '@fastgpt/global/core/dataset/read';
|
||||
|
||||
const PreviewChunks = ({
|
||||
previewSource,
|
||||
@@ -27,19 +28,7 @@ const PreviewChunks = ({
|
||||
const { data = [], isLoading } = useQuery(
|
||||
['previewSource'],
|
||||
() => {
|
||||
if (
|
||||
importSource === ImportDataSourceEnum.fileLocal ||
|
||||
importSource === ImportDataSourceEnum.csvTable ||
|
||||
importSource === ImportDataSourceEnum.fileLink
|
||||
) {
|
||||
return getPreviewChunks({
|
||||
type: importSource,
|
||||
sourceId: previewSource.dbFileId || previewSource.link || '',
|
||||
chunkSize,
|
||||
overlapRatio: chunkOverlapRatio,
|
||||
customSplitChar: processParamsForm.getValues('customSplitChar')
|
||||
});
|
||||
} else if (importSource === ImportDataSourceEnum.fileCustom) {
|
||||
if (importSource === ImportDataSourceEnum.fileCustom) {
|
||||
const customSplitChar = processParamsForm.getValues('customSplitChar');
|
||||
const { chunks } = splitText2Chunks({
|
||||
text: previewSource.rawText || '',
|
||||
@@ -52,7 +41,27 @@ const PreviewChunks = ({
|
||||
a: ''
|
||||
}));
|
||||
}
|
||||
return [];
|
||||
if (importSource === ImportDataSourceEnum.csvTable) {
|
||||
return getPreviewChunks({
|
||||
type: importType2ReadType(importSource),
|
||||
sourceId: previewSource.dbFileId || previewSource.link || previewSource.sourceUrl || '',
|
||||
chunkSize,
|
||||
overlapRatio: chunkOverlapRatio,
|
||||
customSplitChar: processParamsForm.getValues('customSplitChar'),
|
||||
selector: processParamsForm.getValues('webSelector'),
|
||||
isQAImport: true
|
||||
});
|
||||
}
|
||||
|
||||
return getPreviewChunks({
|
||||
type: importType2ReadType(importSource),
|
||||
sourceId: previewSource.dbFileId || previewSource.link || previewSource.sourceUrl || '',
|
||||
chunkSize,
|
||||
overlapRatio: chunkOverlapRatio,
|
||||
customSplitChar: processParamsForm.getValues('customSplitChar'),
|
||||
selector: processParamsForm.getValues('webSelector'),
|
||||
isQAImport: false
|
||||
});
|
||||
},
|
||||
{
|
||||
onError(err) {
|
||||
|
@@ -9,6 +9,7 @@ import { useToast } from '@fastgpt/web/hooks/useToast';
|
||||
import { getErrText } from '@fastgpt/global/common/error/utils';
|
||||
import { useContextSelector } from 'use-context-selector';
|
||||
import { DatasetImportContext } from '../Context';
|
||||
import { importType2ReadType } from '@fastgpt/global/core/dataset/read';
|
||||
|
||||
const PreviewRawText = ({
|
||||
previewSource,
|
||||
@@ -18,32 +19,30 @@ const PreviewRawText = ({
|
||||
onClose: () => void;
|
||||
}) => {
|
||||
const { toast } = useToast();
|
||||
const { importSource } = useContextSelector(DatasetImportContext, (v) => v);
|
||||
const { importSource, processParamsForm } = useContextSelector(DatasetImportContext, (v) => v);
|
||||
|
||||
const { data, isLoading } = useQuery(
|
||||
['previewSource', previewSource?.dbFileId],
|
||||
['previewSource', previewSource.dbFileId, previewSource.link, previewSource.sourceUrl],
|
||||
() => {
|
||||
if (importSource === ImportDataSourceEnum.fileLocal && previewSource.dbFileId) {
|
||||
return getPreviewFileContent({
|
||||
fileId: previewSource.dbFileId,
|
||||
csvFormat: true
|
||||
});
|
||||
if (importSource === ImportDataSourceEnum.fileCustom && previewSource.rawText) {
|
||||
return {
|
||||
previewContent: previewSource.rawText.slice(0, 3000)
|
||||
};
|
||||
}
|
||||
if (importSource === ImportDataSourceEnum.csvTable && previewSource.dbFileId) {
|
||||
return getPreviewFileContent({
|
||||
fileId: previewSource.dbFileId,
|
||||
csvFormat: false
|
||||
type: importType2ReadType(importSource),
|
||||
sourceId: previewSource.dbFileId,
|
||||
isQAImport: true
|
||||
});
|
||||
}
|
||||
if (importSource === ImportDataSourceEnum.fileCustom) {
|
||||
return {
|
||||
previewContent: (previewSource.rawText || '').slice(0, 3000)
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
previewContent: ''
|
||||
};
|
||||
return getPreviewFileContent({
|
||||
type: importType2ReadType(importSource),
|
||||
sourceId: previewSource.dbFileId || previewSource.link || previewSource.sourceUrl || '',
|
||||
isQAImport: false,
|
||||
selector: processParamsForm.getValues('webSelector')
|
||||
});
|
||||
},
|
||||
{
|
||||
onError(err) {
|
||||
|
@@ -162,7 +162,7 @@ const CustomLinkInput = () => {
|
||||
{commonT('Add new')}
|
||||
</Button>
|
||||
<Button
|
||||
isDisabled={list.length === 0}
|
||||
isDisabled={list.filter((item) => !!item.sourceUrl).length === 0}
|
||||
onClick={handleSubmit((data) => {
|
||||
setSources(
|
||||
data.list
|
||||
|
@@ -23,7 +23,7 @@ const LinkCollection = () => {
|
||||
return (
|
||||
<>
|
||||
{activeStep === 0 && <CustomLinkImport />}
|
||||
{activeStep === 1 && <DataProcess showPreviewChunks={false} />}
|
||||
{activeStep === 1 && <DataProcess showPreviewChunks />}
|
||||
{activeStep === 2 && <Upload />}
|
||||
</>
|
||||
);
|
||||
|
@@ -29,7 +29,8 @@ const FileLocal = () => {
|
||||
|
||||
export default React.memo(FileLocal);
|
||||
|
||||
const csvTemplate = `"第一列内容","第二列内容"
|
||||
const csvTemplate = `index,content
|
||||
"第一列内容","第二列内容"
|
||||
"必填列","可选列。CSV 中请注意内容不能包含双引号,双引号是列分割符号"
|
||||
"只会将第一和第二列内容导入,其余列会被忽略",""
|
||||
"结合人工智能的演进历程,AIGC的发展大致可以分为三个阶段,即:早期萌芽阶段(20世纪50年代至90年代中期)、沉淀积累阶段(20世纪90年代中期至21世纪10年代中期),以及快速发展展阶段(21世纪10年代中期至今)。",""
|
||||
|
@@ -123,7 +123,9 @@ export async function checkInvalidDatasetData(start: Date, end: Date) {
|
||||
continue;
|
||||
}
|
||||
} catch (error) {}
|
||||
console.log(++index);
|
||||
if (++index % 100 === 0) {
|
||||
console.log(index);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
import type { PreviewContextProps } from '@/pages/api/common/file/previewContent';
|
||||
import { GET, POST } from '@/web/common/api/request';
|
||||
import type { UploadImgProps } from '@fastgpt/global/common/file/api.d';
|
||||
import { AxiosProgressEvent } from 'axios';
|
||||
@@ -16,7 +17,7 @@ export const postUploadFiles = (
|
||||
}
|
||||
});
|
||||
|
||||
export const getPreviewFileContent = (data: { fileId: string; csvFormat: boolean }) =>
|
||||
export const getPreviewFileContent = (data: PreviewContextProps) =>
|
||||
POST<{
|
||||
previewContent: string;
|
||||
totalLength: number;
|
||||
|
@@ -22,7 +22,6 @@ import type {
|
||||
import type {
|
||||
GetTrainingQueueProps,
|
||||
GetTrainingQueueResponse,
|
||||
PostPreviewFilesChunksProps,
|
||||
SearchTestProps,
|
||||
SearchTestResponse
|
||||
} from '@/global/core/dataset/api.d';
|
||||
@@ -41,6 +40,10 @@ import type { DatasetCollectionsListItemType } from '@/global/core/dataset/type.
|
||||
import { PagingData } from '@/types';
|
||||
import type { getDatasetTrainingQueueResponse } from '@/pages/api/core/dataset/training/getDatasetTrainingQueue';
|
||||
import type { rebuildEmbeddingBody } from '@/pages/api/core/dataset/training/rebuildEmbedding';
|
||||
import type {
|
||||
PostPreviewFilesChunksProps,
|
||||
PreviewChunksResponse
|
||||
} from '@/pages/api/core/dataset/file/getPreviewChunks';
|
||||
|
||||
/* ======================== dataset ======================= */
|
||||
export const getDatasets = (data: { parentId?: string; type?: DatasetTypeEnum }) =>
|
||||
@@ -139,7 +142,7 @@ export const getDatasetTrainingQueue = (datasetId: string) =>
|
||||
});
|
||||
|
||||
export const getPreviewChunks = (data: PostPreviewFilesChunksProps) =>
|
||||
POST<{ q: string; a: string }[]>('/core/dataset/file/getPreviewChunks', data);
|
||||
POST<PreviewChunksResponse>('/core/dataset/file/getPreviewChunks', data);
|
||||
|
||||
/* ================== file ======================== */
|
||||
export const getFileViewUrl = (fileId: string) =>
|
||||
|
Reference in New Issue
Block a user