This commit is contained in:
Archer
2023-12-31 14:12:51 +08:00
committed by GitHub
parent ccca0468da
commit 9ccfda47b7
270 changed files with 8182 additions and 1295 deletions

View File

@@ -1,4 +1,4 @@
import React, { useState } from 'react';
import React from 'react';
import {
Box,
Flex,
@@ -8,10 +8,10 @@ import {
NumberInputStepper,
NumberIncrementStepper,
NumberDecrementStepper,
Input
Input,
Grid
} from '@chakra-ui/react';
import { useConfirm } from '@/web/common/hooks/useConfirm';
import { formatPrice } from '@fastgpt/global/support/wallet/bill/tools';
import MyTooltip from '@/components/MyTooltip';
import { QuestionOutlineIcon } from '@chakra-ui/icons';
import { useDatasetStore } from '@/web/core/dataset/store/dataset';
@@ -25,7 +25,7 @@ const ChunkImport = () => {
const { t } = useTranslation();
const { datasetDetail } = useDatasetStore();
const vectorModel = datasetDetail.vectorModel;
const unitPrice = vectorModel?.price || 0.2;
const unitPrice = vectorModel?.inputPrice || 0.002;
const {
chunkLen,
@@ -33,6 +33,7 @@ const ChunkImport = () => {
setCustomSplitChar,
successChunks,
totalChunks,
totalTokens,
isUnselectedFile,
price,
onclickUpload,
@@ -108,21 +109,27 @@ const ChunkImport = () => {
/>
</Box>
</Box>
{/* price */}
<Flex mt={4} alignItems={'center'}>
<Box>
{t('core.dataset.import.Estimated Price')}
<MyTooltip
label={t('core.dataset.import.Estimated Price Tips', {
price: formatPrice(unitPrice, 1000)
})}
forceShow
>
<QuestionOutlineIcon ml={1} />
</MyTooltip>
</Box>
<Box ml={4}>{t('common.price.Amount', { amount: price, unit: '元' })}</Box>
</Flex>
<Grid mt={4} gridTemplateColumns={'1fr 1fr'} gridGap={2}>
<Flex alignItems={'center'}>
<Box>{t('core.dataset.import.Total tokens')}</Box>
<Box>{totalTokens}</Box>
</Flex>
{/* price */}
<Flex alignItems={'center'}>
<Box>
{t('core.dataset.import.Estimated Price')}
<MyTooltip
label={t('core.dataset.import.Embedding Estimated Price Tips', {
price: unitPrice
})}
forceShow
>
<QuestionOutlineIcon ml={1} />
</MyTooltip>
</Box>
<Box ml={4}>{t('common.price.Amount', { amount: price, unit: '元' })}</Box>
</Flex>
</Grid>
<Flex mt={3}>
{showRePreview && (
<Button variant={'whitePrimary'} mr={4} onClick={onReSplitChunks}>

View File

@@ -1,8 +1,11 @@
import React from 'react';
import { Box, Flex, Button } from '@chakra-ui/react';
import { Box, Flex, Button, Grid } from '@chakra-ui/react';
import { useConfirm } from '@/web/common/hooks/useConfirm';
import { useImportStore, SelectorContainer, PreviewFileOrChunk } from './Provider';
import { useTranslation } from 'next-i18next';
import { useDatasetStore } from '@/web/core/dataset/store/dataset';
import MyTooltip from '@/components/MyTooltip';
import { QuestionOutlineIcon } from '@chakra-ui/icons';
const fileExtension = '.csv';
const csvTemplate = `index,content
@@ -12,8 +15,19 @@ const csvTemplate = `index,content
const CsvImport = () => {
const { t } = useTranslation();
const { successChunks, totalChunks, isUnselectedFile, onclickUpload, uploading } =
useImportStore();
const {
successChunks,
totalChunks,
isUnselectedFile,
onclickUpload,
uploading,
totalTokens,
price
} = useImportStore();
const { datasetDetail } = useDatasetStore();
const vectorModel = datasetDetail.vectorModel;
const unitPrice = vectorModel?.inputPrice || 0.002;
const { openConfirm, ConfirmModal } = useConfirm({
content: t('core.dataset.import.Import Tip')
@@ -31,6 +45,27 @@ const CsvImport = () => {
}}
tip={t('dataset.import csv tip')}
>
<Grid mt={4} gridTemplateColumns={'1fr 1fr'} gridGap={2}>
<Flex alignItems={'center'}>
<Box>{t('core.dataset.import.Total tokens')}</Box>
<Box>{totalTokens}</Box>
</Flex>
{/* price */}
<Flex alignItems={'center'}>
<Box>
{t('core.dataset.import.Estimated Price')}
<MyTooltip
label={t('core.dataset.import.Embedding Estimated Price Tips', {
price: unitPrice
})}
forceShow
>
<QuestionOutlineIcon ml={1} />
</MyTooltip>
</Box>
<Box ml={4}>{t('common.price.Amount', { amount: price, unit: '元' })}</Box>
</Flex>
</Grid>
<Flex mt={3}>
<Button isDisabled={uploading} onClick={openConfirm(onclickUpload)}>
{uploading ? (

View File

@@ -44,32 +44,36 @@ const ImportData = ({
[ImportTypeEnum.chunk]: {
defaultChunkLen: vectorModel?.defaultToken || 500,
chunkOverlapRatio: 0.2,
unitPrice: vectorModel?.price || 0.2,
inputPrice: vectorModel?.inputPrice || 0,
outputPrice: 0,
mode: TrainingModeEnum.chunk,
collectionTrainingType: DatasetCollectionTrainingModeEnum.chunk
},
[ImportTypeEnum.qa]: {
defaultChunkLen: agentModel?.maxContext * 0.55 || 8000,
chunkOverlapRatio: 0,
unitPrice: agentModel?.price || 3,
inputPrice: agentModel?.inputPrice || 0,
outputPrice: agentModel?.outputPrice || 0,
mode: TrainingModeEnum.qa,
collectionTrainingType: DatasetCollectionTrainingModeEnum.qa
},
[ImportTypeEnum.csv]: {
defaultChunkLen: 0,
chunkOverlapRatio: 0,
unitPrice: vectorModel?.price || 0.2,
inputPrice: vectorModel?.inputPrice || 0,
outputPrice: 0,
mode: TrainingModeEnum.chunk,
collectionTrainingType: DatasetCollectionTrainingModeEnum.manual
}
};
return map[importType];
}, [
agentModel?.inputPrice,
agentModel?.maxContext,
agentModel?.price,
agentModel?.outputPrice,
importType,
vectorModel?.defaultToken,
vectorModel?.price
vectorModel?.inputPrice
]);
const TitleStyle: BoxProps = {

View File

@@ -11,7 +11,7 @@ import React, {
import FileSelect, { FileItemType, Props as FileSelectProps } from './FileSelect';
import { useRequest } from '@/web/common/hooks/useRequest';
import { postDatasetCollection } from '@/web/core/dataset/api';
import { formatPrice } from '@fastgpt/global/support/wallet/bill/tools';
import { formatModelPrice2Read } from '@fastgpt/global/support/wallet/bill/tools';
import { splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import { hashStr } from '@fastgpt/global/common/string/tools';
import { useToast } from '@/web/common/hooks/useToast';
@@ -43,6 +43,7 @@ type useImportStoreType = {
setSuccessChunks: Dispatch<SetStateAction<number>>;
isUnselectedFile: boolean;
totalChunks: number;
totalTokens: number;
onclickUpload: (e?: { prompt?: string }) => void;
onReSplitChunks: () => void;
price: number;
@@ -68,6 +69,7 @@ const StateContext = createContext<useImportStoreType>({
isUnselectedFile: false,
totalChunks: 0,
totalTokens: 0,
onReSplitChunks: function (): void {
throw new Error('Function not implemented.');
},
@@ -100,7 +102,8 @@ export const useImportStore = () => useContext(StateContext);
const Provider = ({
datasetId,
parentId,
unitPrice,
inputPrice,
outputPrice,
mode,
collectionTrainingType,
vectorModel,
@@ -113,7 +116,8 @@ const Provider = ({
}: {
datasetId: string;
parentId: string;
unitPrice: number;
inputPrice: number;
outputPrice: number;
mode: `${TrainingModeEnum}`;
collectionTrainingType: `${DatasetCollectionTrainingModeEnum}`;
vectorModel: string;
@@ -140,9 +144,17 @@ const Provider = ({
[files]
);
const totalTokens = useMemo(() => files.reduce((sum, file) => sum + file.tokens, 0), [files]);
const price = useMemo(() => {
return formatPrice(files.reduce((sum, file) => sum + file.tokens, 0) * unitPrice);
}, [files, unitPrice]);
if (mode === TrainingModeEnum.qa) {
const inputTotal = totalTokens * inputPrice;
const outputTotal = totalTokens * 0.5 * outputPrice;
return formatModelPrice2Read(inputTotal + outputTotal);
}
return formatModelPrice2Read(totalTokens * inputPrice);
}, [inputPrice, mode, outputPrice, totalTokens]);
/* start upload data */
const { mutate: onclickUpload, isLoading: uploading } = useRequest({
@@ -249,6 +261,7 @@ const Provider = ({
setSuccessChunks,
isUnselectedFile,
totalChunks,
totalTokens,
price,
onReSplitChunks,
onclickUpload,

View File

@@ -1,7 +1,6 @@
import React, { useState } from 'react';
import { Box, Flex, Button, Textarea } from '@chakra-ui/react';
import { Box, Flex, Button, Textarea, Grid } from '@chakra-ui/react';
import { useConfirm } from '@/web/common/hooks/useConfirm';
import { formatPrice } from '@fastgpt/global/support/wallet/bill/tools';
import MyTooltip from '@/components/MyTooltip';
import { QuestionOutlineIcon } from '@chakra-ui/icons';
import { Prompt_AgentQA } from '@/global/core/prompt/agent';
@@ -15,11 +14,11 @@ const QAImport = () => {
const { t } = useTranslation();
const { datasetDetail } = useDatasetStore();
const agentModel = datasetDetail.agentModel;
const unitPrice = agentModel?.price || 3;
const {
successChunks,
totalChunks,
totalTokens,
isUnselectedFile,
price,
onclickUpload,
@@ -55,20 +54,28 @@ const QAImport = () => {
</Box>
</Box>
{/* price */}
<Flex py={5} alignItems={'center'}>
<Box>
{t('core.dataset.import.Estimated Price')}
<MyTooltip
label={t('core.dataset.import.Estimated Price Tips', {
price: formatPrice(unitPrice, 1000)
})}
forceShow
>
<QuestionOutlineIcon ml={1} />
</MyTooltip>
</Box>
<Box ml={4}>{t('common.price.Amount', { amount: price, unit: '元' })}</Box>
</Flex>
<Grid mt={4} gridTemplateColumns={'1fr 1fr'} gridGap={2}>
<Flex alignItems={'center'}>
<Box>{t('core.dataset.import.Total tokens')}</Box>
<Box>{totalTokens}</Box>
</Flex>
{/* price */}
<Flex alignItems={'center'}>
<Box>
{t('core.dataset.import.Estimated Price')}
<MyTooltip
label={t('core.dataset.import.QA Estimated Price Tips', {
inputPrice: agentModel?.inputPrice,
outputPrice: agentModel?.outputPrice
})}
forceShow
>
<QuestionOutlineIcon ml={1} />
</MyTooltip>
</Box>
<Box ml={4}>{t('common.price.Amount', { amount: price, unit: '元' })}</Box>
</Flex>
</Grid>
<Flex mt={3}>
{showRePreview && (
<Button variant={'whitePrimary'} mr={4} onClick={onReSplitChunks}>

View File

@@ -1,22 +1,12 @@
import React, { useEffect, useMemo, useState } from 'react';
import {
Box,
Textarea,
Button,
Flex,
useTheme,
Grid,
Progress,
Switch,
useDisclosure
} from '@chakra-ui/react';
import { Box, Textarea, Button, Flex, useTheme, Grid, useDisclosure } from '@chakra-ui/react';
import { useDatasetStore } from '@/web/core/dataset/store/dataset';
import { useSearchTestStore, SearchTestStoreItemType } from '@/web/core/dataset/store/searchTest';
import { getDatasetDataItemById, postSearchText } from '@/web/core/dataset/api';
import MyIcon from '@/components/Icon';
import { useRequest } from '@/web/common/hooks/useRequest';
import { formatTimeToChatTime } from '@/utils/tools';
import InputDataModal, { type InputDataType } from './InputDataModal';
import InputDataModal, { RawSourceText, type InputDataType } from './InputDataModal';
import { useSystemStore } from '@/web/common/system/useSystemStore';
import { getErrText } from '@fastgpt/global/common/error/utils';
import { useToast } from '@/web/common/hooks/useToast';
@@ -45,6 +35,7 @@ const Test = ({ datasetId }: { datasetId: string }) => {
const [searchMode, setSearchMode] = useState<`${DatasetSearchModeEnum}`>(
DatasetSearchModeEnum.embedding
);
const [usingReRank, setUsingReRank] = useState(false);
const searchModeData = DatasetSearchModeMap[searchMode];
const {
@@ -59,7 +50,8 @@ const Test = ({ datasetId }: { datasetId: string }) => {
);
const { mutate, isLoading } = useRequest({
mutationFn: () => postSearchText({ datasetId, text: inputText.trim(), searchMode, limit: 30 }),
mutationFn: () =>
postSearchText({ datasetId, text: inputText.trim(), searchMode, usingReRank, limit: 20 }),
onSuccess(res: SearchTestResponse) {
if (!res || res.list.length === 0) {
return toast({
@@ -73,7 +65,8 @@ const Test = ({ datasetId }: { datasetId: string }) => {
text: inputText.trim(),
time: new Date(),
results: res.list,
duration: res.duration
duration: res.duration,
searchMode
};
pushDatasetTestItem(testItem);
setDatasetTestItem(testItem);
@@ -123,8 +116,8 @@ const Test = ({ datasetId }: { datasetId: string }) => {
variant={'unstyled'}
maxLength={datasetDetail.vectorModel.maxToken}
placeholder={t('core.dataset.test.Test Text Placeholder')}
value={inputText}
onChange={(e) => setInputText(e.target.value)}
defaultValue={inputText}
onBlur={(e) => setInputText(e.target.value)}
/>
<Flex alignItems={'center'} justifyContent={'flex-end'}>
<Box mx={3} color={'myGray.500'}>
@@ -142,8 +135,9 @@ const Test = ({ datasetId }: { datasetId: string }) => {
</Flex>
<Box mt={2}>
<Flex py={2} fontWeight={'bold'} borderBottom={theme.borders.sm}>
<Box w={'80px'}>{t('core.dataset.search.search mode')}</Box>
<Box flex={1}>{t('core.dataset.test.Test Text')}</Box>
<Box w={'80px'}>{t('common.Time')}</Box>
<Box w={'70px'}>{t('common.Time')}</Box>
<Box w={'14px'}></Box>
</Flex>
{testHistories.map((item) => (
@@ -159,12 +153,27 @@ const Test = ({ datasetId }: { datasetId: string }) => {
}
}}
cursor={'pointer'}
fontSize={'sm'}
onClick={() => setDatasetTestItem(item)}
>
<Box w={'80px'}>
{DatasetSearchModeMap[item.searchMode] ? (
<Flex alignItems={'center'}>
<MyIcon
name={DatasetSearchModeMap[item.searchMode].icon as any}
w={'12px'}
mr={'1px'}
/>
{t(DatasetSearchModeMap[item.searchMode].title)}
</Flex>
) : (
'-'
)}
</Box>
<Box flex={1} mr={2}>
{item.text}
</Box>
<Box w={'80px'}>{formatTimeToChatTime(item.time)}</Box>
<Box w={'70px'}>{formatTimeToChatTime(item.time)}</Box>
<MyTooltip label={t('core.dataset.test.delete test history')}>
<Box w={'14px'} h={'14px'}>
<MyIcon
@@ -232,7 +241,7 @@ const Test = ({ datasetId }: { datasetId: string }) => {
<Box
key={item.id}
pb={2}
borderRadius={'sm'}
borderRadius={'lg'}
border={theme.borders.base}
_notLast={{ mb: 2 }}
cursor={'pointer'}
@@ -267,12 +276,19 @@ const Test = ({ datasetId }: { datasetId: string }) => {
border={theme.borders.base}
px={2}
fontSize={'sm'}
mr={1}
mr={3}
borderRadius={'md'}
>
# {index + 1}
</Box>
<MyIcon name={'kbTest'} w={'14px'} />
<RawSourceText
fontWeight={'bold'}
color={'black'}
sourceName={item.sourceName}
sourceId={item.sourceId}
canView
/>
{/* <MyIcon name={'kbTest'} w={'14px'} />
<Progress
mx={2}
flex={'1 0 0'}
@@ -281,7 +297,7 @@ const Test = ({ datasetId }: { datasetId: string }) => {
borderRadius={'20px'}
colorScheme="gray"
/>
<Box>{item.score.toFixed(4)}</Box>
<Box>{item.score.toFixed(4)}</Box> */}
</Flex>
<Box px={2} fontSize={'xs'} color={'myGray.600'} wordBreak={'break-word'}>
<Box>{item.q}</Box>
@@ -335,9 +351,11 @@ const Test = ({ datasetId }: { datasetId: string }) => {
{isOpenSelectMode && (
<DatasetParamsModal
searchMode={searchMode}
usingReRank={usingReRank}
onClose={onCloseSelectMode}
onSuccess={(e) => {
setSearchMode(e.searchMode);
e.usingReRank !== undefined && setUsingReRank(e.usingReRank);
}}
/>
)}

View File

@@ -1,6 +1,6 @@
import React, { useCallback } from 'react';
import React, { useCallback, useMemo } from 'react';
import { useRouter } from 'next/router';
import { Box, Flex, IconButton, useTheme } from '@chakra-ui/react';
import { Box, Flex, IconButton, useTheme, Progress } from '@chakra-ui/react';
import { useToast } from '@/web/common/hooks/useToast';
import { useQuery } from '@tanstack/react-query';
import { getErrText } from '@fastgpt/global/common/error/utils';
@@ -92,9 +92,55 @@ const Detail = ({ datasetId, currentTab }: { datasetId: string; currentTab: `${T
}
});
const { data: trainingQueueLen = 0 } = useQuery(['getTrainingQueueLen'], getTrainingQueueLen, {
refetchInterval: 10000
});
const { data: { vectorTrainingCount = 0, agentTrainingCount = 0 } = {} } = useQuery(
['getTrainingQueueLen'],
() =>
getTrainingQueueLen({
vectorModel: datasetDetail.vectorModel.model,
agentModel: datasetDetail.agentModel.model
}),
{
refetchInterval: 10000
}
);
const { vectorTrainingMap, agentTrainingMap } = useMemo(() => {
const vectorTrainingMap = (() => {
if (vectorTrainingCount < 1000)
return {
colorSchema: 'green',
tip: t('core.dataset.training.Leisure')
};
if (vectorTrainingCount < 10000)
return {
colorSchema: 'yellow',
tip: t('core.dataset.training.Waiting')
};
return {
colorSchema: 'red',
tip: t('core.dataset.training.Full')
};
})();
const agentTrainingMap = (() => {
if (agentTrainingCount < 100)
return {
colorSchema: 'green',
tip: t('core.dataset.training.Leisure')
};
if (agentTrainingCount < 1000)
return {
colorSchema: 'yellow',
tip: t('core.dataset.training.Waiting')
};
return {
colorSchema: 'red',
tip: t('core.dataset.training.Full')
};
})();
return {
vectorTrainingMap,
agentTrainingMap
};
}, [agentTrainingCount, t, vectorTrainingCount]);
return (
<>
@@ -155,19 +201,32 @@ const Detail = ({ datasetId, currentTab }: { datasetId: string; currentTab: `${T
setCurrentTab(e);
}}
/>
<Box textAlign={'center'}>
<Flex justifyContent={'center'} alignItems={'center'}>
<MyIcon mr={1} name="overviewLight" w={'16px'} color={'green.500'} />
<Box>{t('dataset.System Data Queue')}</Box>
<MyTooltip
label={t('dataset.Queue Desc', { title: feConfigs?.systemTitle })}
placement={'top'}
>
<QuestionOutlineIcon ml={1} w={'16px'} />
</MyTooltip>
</Flex>
<Box mt={1} fontWeight={'bold'}>
{trainingQueueLen}
<Box>
<Box mb={3}>
<Box fontSize={'sm'}>
{t('core.dataset.training.Agent queue')}({agentTrainingMap.tip})
</Box>
<Progress
value={100}
size={'xs'}
colorScheme={agentTrainingMap.colorSchema}
borderRadius={'10px'}
isAnimated
hasStripe
/>
</Box>
<Box mb={3}>
<Box fontSize={'sm'}>
{t('core.dataset.training.Vector queue')}({vectorTrainingMap.tip})
</Box>
<Progress
value={100}
size={'xs'}
colorScheme={vectorTrainingMap.colorSchema}
borderRadius={'10px'}
isAnimated
hasStripe
/>
</Box>
</Box>
<Flex