mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 05:12:39 +00:00
V4.6.6-2 (#673)
This commit is contained in:
@@ -48,6 +48,8 @@ export type FastGPTFeConfigsType = {
|
||||
};
|
||||
scripts?: { [key: string]: string }[];
|
||||
favicon?: string;
|
||||
customApiDomain?: string;
|
||||
customSharePageDomain?: string;
|
||||
};
|
||||
|
||||
export type SystemEnvType = {
|
||||
|
1
packages/global/common/vectorStore/constants.ts
Normal file
1
packages/global/common/vectorStore/constants.ts
Normal file
@@ -0,0 +1 @@
|
||||
export const PgDatasetTableName = 'modeldata';
|
15
packages/global/core/ai/model.d.ts
vendored
15
packages/global/core/ai/model.d.ts
vendored
@@ -3,7 +3,8 @@ export type LLMModelItemType = {
|
||||
name: string;
|
||||
maxContext: number;
|
||||
maxResponse: number;
|
||||
price: number;
|
||||
inputPrice: number;
|
||||
outputPrice: number;
|
||||
};
|
||||
export type ChatModelItemType = LLMModelItemType & {
|
||||
quoteMaxToken: number;
|
||||
@@ -22,7 +23,8 @@ export type VectorModelItemType = {
|
||||
model: string;
|
||||
name: string;
|
||||
defaultToken: number;
|
||||
price: number;
|
||||
inputPrice: number;
|
||||
outputPrice: number;
|
||||
maxToken: number;
|
||||
weight: number;
|
||||
};
|
||||
@@ -30,7 +32,8 @@ export type VectorModelItemType = {
|
||||
export type ReRankModelItemType = {
|
||||
model: string;
|
||||
name: string;
|
||||
price: number;
|
||||
inputPrice: number;
|
||||
outputPrice?: number;
|
||||
requestUrl?: string;
|
||||
requestAuth?: string;
|
||||
};
|
||||
@@ -38,12 +41,14 @@ export type ReRankModelItemType = {
|
||||
export type AudioSpeechModelType = {
|
||||
model: string;
|
||||
name: string;
|
||||
price: number;
|
||||
inputPrice: number;
|
||||
outputPrice?: number;
|
||||
voices: { label: string; value: string; bufferId: string }[];
|
||||
};
|
||||
|
||||
export type WhisperModelType = {
|
||||
model: string;
|
||||
name: string;
|
||||
price: number;
|
||||
inputPrice: number;
|
||||
outputPrice?: number;
|
||||
};
|
||||
|
@@ -6,7 +6,8 @@ export const defaultQAModels: LLMModelItemType[] = [
|
||||
name: 'GPT35-16k',
|
||||
maxContext: 16000,
|
||||
maxResponse: 16000,
|
||||
price: 0
|
||||
inputPrice: 0,
|
||||
outputPrice: 0
|
||||
}
|
||||
];
|
||||
|
||||
@@ -14,7 +15,8 @@ export const defaultVectorModels: VectorModelItemType[] = [
|
||||
{
|
||||
model: 'text-embedding-ada-002',
|
||||
name: 'Embedding-2',
|
||||
price: 0,
|
||||
inputPrice: 0,
|
||||
outputPrice: 0,
|
||||
defaultToken: 500,
|
||||
maxToken: 3000,
|
||||
weight: 100
|
||||
|
2
packages/global/core/app/type.d.ts
vendored
2
packages/global/core/app/type.d.ts
vendored
@@ -65,6 +65,7 @@ export type AppSimpleEditFormType = {
|
||||
similarity: number;
|
||||
limit: number;
|
||||
searchMode: `${DatasetSearchModeEnum}`;
|
||||
usingReRank: boolean;
|
||||
searchEmptyText: string;
|
||||
};
|
||||
cfr: {
|
||||
@@ -112,6 +113,7 @@ export type AppSimpleEditConfigTemplateType = {
|
||||
similarity?: boolean;
|
||||
limit?: boolean;
|
||||
searchMode: `${DatasetSearchModeEnum}`;
|
||||
usingReRank: boolean;
|
||||
searchEmptyText?: boolean;
|
||||
};
|
||||
cfr?: {
|
||||
|
@@ -26,7 +26,8 @@ export const getDefaultAppForm = (templateId = 'fastgpt-universal'): AppSimpleEd
|
||||
similarity: 0.4,
|
||||
limit: 1500,
|
||||
searchEmptyText: '',
|
||||
searchMode: DatasetSearchModeEnum.embedding
|
||||
searchMode: DatasetSearchModeEnum.embedding,
|
||||
usingReRank: false
|
||||
},
|
||||
userGuide: {
|
||||
welcomeText: '',
|
||||
@@ -95,6 +96,10 @@ export const appModules2Form = ({
|
||||
defaultAppForm.dataset.searchMode =
|
||||
findInputValueByKey(module.inputs, ModuleInputKeyEnum.datasetSearchMode) ||
|
||||
DatasetSearchModeEnum.embedding;
|
||||
defaultAppForm.dataset.usingReRank = !!findInputValueByKey(
|
||||
module.inputs,
|
||||
ModuleInputKeyEnum.datasetSearchUsingReRank
|
||||
);
|
||||
|
||||
// empty text
|
||||
const emptyOutputs =
|
||||
|
7
packages/global/core/chat/type.d.ts
vendored
7
packages/global/core/chat/type.d.ts
vendored
@@ -89,7 +89,8 @@ export type moduleDispatchResType = {
|
||||
moduleLogo?: string;
|
||||
price?: number;
|
||||
runningTime?: number;
|
||||
tokens?: number;
|
||||
inputTokens?: number;
|
||||
outputTokens?: number;
|
||||
model?: string;
|
||||
query?: string;
|
||||
contextTotalLen?: number;
|
||||
@@ -105,6 +106,7 @@ export type moduleDispatchResType = {
|
||||
similarity?: number;
|
||||
limit?: number;
|
||||
searchMode?: `${DatasetSearchModeEnum}`;
|
||||
searchUsingReRank?: boolean;
|
||||
|
||||
// cq
|
||||
cqList?: ClassifyQuestionAgentItemType[];
|
||||
@@ -124,6 +126,9 @@ export type moduleDispatchResType = {
|
||||
|
||||
// tf switch
|
||||
tfSwitchResult?: boolean;
|
||||
|
||||
// abandon
|
||||
tokens?: number;
|
||||
};
|
||||
|
||||
export type ChatHistoryItemResType = moduleDispatchResType & {
|
||||
|
@@ -1,5 +1,3 @@
|
||||
export const PgDatasetTableName = 'modeldata';
|
||||
|
||||
/* ------------ dataset -------------- */
|
||||
export enum DatasetTypeEnum {
|
||||
folder = 'folder',
|
||||
@@ -119,8 +117,8 @@ export const TrainingTypeMap = {
|
||||
/* ------------ search -------------- */
|
||||
export enum DatasetSearchModeEnum {
|
||||
embedding = 'embedding',
|
||||
embeddingReRank = 'embeddingReRank',
|
||||
embFullTextReRank = 'embFullTextReRank'
|
||||
fullTextRecall = 'fullTextRecall',
|
||||
mixedRecall = 'mixedRecall'
|
||||
}
|
||||
|
||||
export const DatasetSearchModeMap = {
|
||||
@@ -130,18 +128,25 @@ export const DatasetSearchModeMap = {
|
||||
desc: 'core.dataset.search.mode.embedding desc',
|
||||
value: DatasetSearchModeEnum.embedding
|
||||
},
|
||||
[DatasetSearchModeEnum.embeddingReRank]: {
|
||||
icon: 'core/dataset/modeEmbeddingRerank',
|
||||
title: 'core.dataset.search.mode.embeddingReRank',
|
||||
desc: 'core.dataset.search.mode.embeddingReRank desc',
|
||||
value: DatasetSearchModeEnum.embeddingReRank
|
||||
[DatasetSearchModeEnum.fullTextRecall]: {
|
||||
icon: 'core/dataset/fullTextRecall',
|
||||
title: 'core.dataset.search.mode.fullTextRecall',
|
||||
desc: 'core.dataset.search.mode.fullTextRecall desc',
|
||||
value: DatasetSearchModeEnum.fullTextRecall
|
||||
},
|
||||
[DatasetSearchModeEnum.embFullTextReRank]: {
|
||||
icon: 'core/dataset/modeEmbFTRerank',
|
||||
title: 'core.dataset.search.mode.embFullTextReRank',
|
||||
desc: 'core.dataset.search.mode.embFullTextReRank desc',
|
||||
value: DatasetSearchModeEnum.embFullTextReRank
|
||||
[DatasetSearchModeEnum.mixedRecall]: {
|
||||
icon: 'core/dataset/mixedRecall',
|
||||
title: 'core.dataset.search.mode.mixedRecall',
|
||||
desc: 'core.dataset.search.mode.mixedRecall desc',
|
||||
value: DatasetSearchModeEnum.mixedRecall
|
||||
}
|
||||
};
|
||||
|
||||
export enum SearchScoreTypeEnum {
|
||||
embedding = 'embedding',
|
||||
fullText = 'fullText',
|
||||
reRank = 'reRank',
|
||||
rrf = 'rrf'
|
||||
}
|
||||
|
||||
export const FolderAvatarSrc = '/imgs/files/folder.svg';
|
||||
|
4
packages/global/core/dataset/type.d.ts
vendored
4
packages/global/core/dataset/type.d.ts
vendored
@@ -6,6 +6,7 @@ import {
|
||||
DatasetDataIndexTypeEnum,
|
||||
DatasetStatusEnum,
|
||||
DatasetTypeEnum,
|
||||
SearchScoreTypeEnum,
|
||||
TrainingModeEnum
|
||||
} from './constant';
|
||||
|
||||
@@ -161,5 +162,6 @@ export type DatasetFileSchema = {
|
||||
|
||||
/* ============= search =============== */
|
||||
export type SearchDataResponseItemType = Omit<DatasetDataItemType, 'isOwner' | 'canWrite'> & {
|
||||
score: number;
|
||||
score: { type: `${SearchScoreTypeEnum}`; value: number; index: number }[];
|
||||
// score: number;
|
||||
};
|
||||
|
@@ -63,6 +63,7 @@ export enum ModuleInputKeyEnum {
|
||||
datasetSimilarity = 'similarity',
|
||||
datasetLimit = 'limit',
|
||||
datasetSearchMode = 'searchMode',
|
||||
datasetSearchUsingReRank = 'usingReRank',
|
||||
datasetParamsModal = 'datasetParamsModal',
|
||||
|
||||
// context extract
|
||||
|
@@ -64,12 +64,21 @@ export const DatasetSearchModule: FlowModuleTemplateType = {
|
||||
{
|
||||
key: ModuleInputKeyEnum.datasetSearchMode,
|
||||
type: FlowNodeInputTypeEnum.hidden,
|
||||
label: 'core.dataset.search.Mode',
|
||||
label: '',
|
||||
valueType: ModuleIOValueTypeEnum.string,
|
||||
showTargetInApp: false,
|
||||
showTargetInPlugin: false,
|
||||
value: DatasetSearchModeEnum.embedding
|
||||
},
|
||||
{
|
||||
key: ModuleInputKeyEnum.datasetSearchUsingReRank,
|
||||
type: FlowNodeInputTypeEnum.hidden,
|
||||
label: '',
|
||||
valueType: ModuleIOValueTypeEnum.boolean,
|
||||
showTargetInApp: false,
|
||||
showTargetInPlugin: false,
|
||||
value: false
|
||||
},
|
||||
{
|
||||
key: ModuleInputKeyEnum.datasetParamsModal,
|
||||
type: FlowNodeInputTypeEnum.selectDatasetParamsModal,
|
||||
|
1
packages/global/support/user/team/type.d.ts
vendored
1
packages/global/support/user/team/type.d.ts
vendored
@@ -9,6 +9,7 @@ export type TeamSchema = {
|
||||
createTime: Date;
|
||||
balance: number;
|
||||
maxSize: number;
|
||||
lastDatasetBillTime: Date;
|
||||
};
|
||||
|
||||
export type TeamMemberSchema = {
|
||||
|
5
packages/global/support/wallet/bill/api.d.ts
vendored
5
packages/global/support/wallet/bill/api.d.ts
vendored
@@ -1,5 +1,5 @@
|
||||
import { BillSourceEnum } from './constants';
|
||||
import { BillListItemType } from './type';
|
||||
import { BillListItemCountType, BillListItemType } from './type';
|
||||
|
||||
export type CreateTrainingBillProps = {
|
||||
name: string;
|
||||
@@ -7,13 +7,12 @@ export type CreateTrainingBillProps = {
|
||||
agentModel?: string;
|
||||
};
|
||||
|
||||
export type ConcatBillProps = {
|
||||
export type ConcatBillProps = BillListItemCountType & {
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
billId?: string;
|
||||
total: number;
|
||||
listIndex?: number;
|
||||
tokens?: number;
|
||||
};
|
||||
|
||||
export type CreateBillProps = {
|
||||
|
@@ -1,16 +1,19 @@
|
||||
// ¥1 = 100000
|
||||
// model price: xxx/1k tokens
|
||||
// ¥1 = 100000.
|
||||
export const PRICE_SCALE = 100000;
|
||||
|
||||
export enum BillSourceEnum {
|
||||
fastgpt = 'fastgpt',
|
||||
api = 'api',
|
||||
shareLink = 'shareLink',
|
||||
training = 'training'
|
||||
training = 'training',
|
||||
datasetStore = 'datasetStore'
|
||||
}
|
||||
|
||||
export const BillSourceMap: Record<`${BillSourceEnum}`, string> = {
|
||||
[BillSourceEnum.fastgpt]: '在线使用',
|
||||
[BillSourceEnum.api]: 'Api',
|
||||
[BillSourceEnum.shareLink]: '免登录链接',
|
||||
[BillSourceEnum.training]: '数据训练'
|
||||
[BillSourceEnum.training]: '数据训练',
|
||||
[BillSourceEnum.datasetStore]: '知识库存储'
|
||||
};
|
||||
|
@@ -6,9 +6,12 @@ import { AuthUserTypeEnum } from '../../permission/constant';
|
||||
/**
|
||||
* dataset price / PRICE_SCALE = real price
|
||||
*/
|
||||
export const formatPrice = (val = 0, multiple = 1) => {
|
||||
export const formatStorePrice2Read = (val = 0, multiple = 1) => {
|
||||
return Number(((val / PRICE_SCALE) * multiple).toFixed(10));
|
||||
};
|
||||
export const formatModelPrice2Read = (val = 0) => {
|
||||
return Number((val / 1000).toFixed(10));
|
||||
};
|
||||
|
||||
export const getBillSourceByAuthType = ({
|
||||
shareId,
|
||||
|
13
packages/global/support/wallet/bill/type.d.ts
vendored
13
packages/global/support/wallet/bill/type.d.ts
vendored
@@ -1,11 +1,20 @@
|
||||
import { CreateBillProps } from './api';
|
||||
import { BillSourceEnum } from './constants';
|
||||
|
||||
export type BillListItemType = {
|
||||
export type BillListItemCountType = {
|
||||
inputTokens?: number;
|
||||
outputTokens?: number;
|
||||
textLen?: number;
|
||||
duration?: number;
|
||||
dataLen?: number;
|
||||
|
||||
// abandon
|
||||
tokenLen?: number;
|
||||
};
|
||||
export type BillListItemType = BillListItemCountType & {
|
||||
moduleName: string;
|
||||
amount: number;
|
||||
model?: string;
|
||||
tokenLen?: number;
|
||||
};
|
||||
|
||||
export type BillSchema = CreateBillProps & {
|
||||
|
5
packages/service/common/pg/type.d.ts
vendored
5
packages/service/common/pg/type.d.ts
vendored
@@ -1,5 +0,0 @@
|
||||
import type { Pool } from 'pg';
|
||||
|
||||
declare global {
|
||||
var pgClient: Pool | null;
|
||||
}
|
@@ -4,11 +4,13 @@ import dayjs from 'dayjs';
|
||||
export const addLog = {
|
||||
log(level: 'info' | 'warn' | 'error', msg: string, obj: Record<string, any> = {}) {
|
||||
console.log(
|
||||
`[${level.toLocaleUpperCase()}] ${dayjs().format(
|
||||
'YYYY-MM-DD HH:mm:ss'
|
||||
)} ${msg}: ${JSON.stringify(obj)}`
|
||||
`[${level.toLocaleUpperCase()}] ${dayjs().format('YYYY-MM-DD HH:mm:ss')} ${msg} ${
|
||||
level !== 'error' ? JSON.stringify(obj) : ''
|
||||
}`
|
||||
);
|
||||
|
||||
level === 'error' && console.error(obj);
|
||||
|
||||
const lokiUrl = process.env.LOKI_LOG_URL as string;
|
||||
if (!lokiUrl) return;
|
||||
|
||||
|
19
packages/service/common/vectorStore/controller.d.ts
vendored
Normal file
19
packages/service/common/vectorStore/controller.d.ts
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
export type DeleteDatasetVectorProps = {
|
||||
id?: string;
|
||||
datasetIds?: string[];
|
||||
collectionIds?: string[];
|
||||
dataIds?: string[];
|
||||
};
|
||||
|
||||
export type InsertVectorProps = {
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
datasetId: string;
|
||||
collectionId: string;
|
||||
dataId: string;
|
||||
};
|
||||
|
||||
export type EmbeddingRecallProps = {
|
||||
similarity?: number;
|
||||
datasetIds: string[];
|
||||
};
|
62
packages/service/common/vectorStore/controller.ts
Normal file
62
packages/service/common/vectorStore/controller.ts
Normal file
@@ -0,0 +1,62 @@
|
||||
/* vector crud */
|
||||
import { PgVector } from './pg/class';
|
||||
import { getVectorsByText } from '../../core/ai/embedding';
|
||||
import { InsertVectorProps } from './controller.d';
|
||||
|
||||
const getVectorObj = () => {
|
||||
return new PgVector();
|
||||
};
|
||||
|
||||
export const initVectorStore = getVectorObj().init;
|
||||
export const deleteDatasetDataVector = getVectorObj().delete;
|
||||
export const recallFromVectorStore = getVectorObj().recall;
|
||||
export const getVectorDataByTime = getVectorObj().getVectorDataByTime;
|
||||
export const getVectorCountByTeamId = getVectorObj().getVectorCountByTeamId;
|
||||
|
||||
export const insertDatasetDataVector = async ({
|
||||
model,
|
||||
query,
|
||||
...props
|
||||
}: InsertVectorProps & {
|
||||
query: string;
|
||||
model: string;
|
||||
}) => {
|
||||
const { vectors, tokens } = await getVectorsByText({
|
||||
model,
|
||||
input: query
|
||||
});
|
||||
const { insertId } = await getVectorObj().insert({
|
||||
...props,
|
||||
vectors
|
||||
});
|
||||
|
||||
return {
|
||||
tokens,
|
||||
insertId
|
||||
};
|
||||
};
|
||||
|
||||
export const updateDatasetDataVector = async ({
|
||||
id,
|
||||
query,
|
||||
model
|
||||
}: {
|
||||
id: string;
|
||||
query: string;
|
||||
model: string;
|
||||
}) => {
|
||||
// get vector
|
||||
const { vectors, tokens } = await getVectorsByText({
|
||||
model,
|
||||
input: [query]
|
||||
});
|
||||
|
||||
await getVectorObj().update({
|
||||
id,
|
||||
vectors
|
||||
});
|
||||
|
||||
return {
|
||||
tokens
|
||||
};
|
||||
};
|
20
packages/service/common/vectorStore/pg/class.ts
Normal file
20
packages/service/common/vectorStore/pg/class.ts
Normal file
@@ -0,0 +1,20 @@
|
||||
import {
|
||||
initPg,
|
||||
insertDatasetDataVector,
|
||||
updateDatasetDataVector,
|
||||
deleteDatasetDataVector,
|
||||
embeddingRecall,
|
||||
getVectorDataByTime,
|
||||
getVectorCountByTeamId
|
||||
} from './controller';
|
||||
|
||||
export class PgVector {
|
||||
constructor() {}
|
||||
init = initPg;
|
||||
insert = insertDatasetDataVector;
|
||||
update = updateDatasetDataVector;
|
||||
delete = deleteDatasetDataVector;
|
||||
recall = embeddingRecall;
|
||||
getVectorCountByTeamId = getVectorCountByTeamId;
|
||||
getVectorDataByTime = getVectorDataByTime;
|
||||
}
|
199
packages/service/common/vectorStore/pg/controller.ts
Normal file
199
packages/service/common/vectorStore/pg/controller.ts
Normal file
@@ -0,0 +1,199 @@
|
||||
/* pg vector crud */
|
||||
import { PgDatasetTableName } from '@fastgpt/global/common/vectorStore/constants';
|
||||
import { delay } from '@fastgpt/global/common/system/utils';
|
||||
import { PgClient, connectPg } from './index';
|
||||
import { PgSearchRawType } from '@fastgpt/global/core/dataset/api';
|
||||
import { EmbeddingRecallItemType } from '../type';
|
||||
import { DeleteDatasetVectorProps, EmbeddingRecallProps } from '../controller.d';
|
||||
import dayjs from 'dayjs';
|
||||
|
||||
export async function initPg() {
|
||||
try {
|
||||
await connectPg();
|
||||
await PgClient.query(`
|
||||
CREATE EXTENSION IF NOT EXISTS vector;
|
||||
CREATE TABLE IF NOT EXISTS ${PgDatasetTableName} (
|
||||
id BIGSERIAL PRIMARY KEY,
|
||||
vector VECTOR(1536) NOT NULL,
|
||||
team_id VARCHAR(50) NOT NULL,
|
||||
tmb_id VARCHAR(50) NOT NULL,
|
||||
dataset_id VARCHAR(50) NOT NULL,
|
||||
collection_id VARCHAR(50) NOT NULL,
|
||||
data_id VARCHAR(50) NOT NULL,
|
||||
createTime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
);
|
||||
CREATE INDEX IF NOT EXISTS vector_index ON ${PgDatasetTableName} USING hnsw (vector vector_ip_ops) WITH (m = 32, ef_construction = 64);
|
||||
`);
|
||||
|
||||
console.log('init pg successful');
|
||||
} catch (error) {
|
||||
console.log('init pg error', error);
|
||||
}
|
||||
}
|
||||
|
||||
export const insertDatasetDataVector = async (props: {
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
datasetId: string;
|
||||
collectionId: string;
|
||||
dataId: string;
|
||||
vectors: number[][];
|
||||
retry?: number;
|
||||
}): Promise<{ insertId: string }> => {
|
||||
const { dataId, teamId, tmbId, datasetId, collectionId, vectors, retry = 3 } = props;
|
||||
try {
|
||||
const { rows } = await PgClient.insert(PgDatasetTableName, {
|
||||
values: [
|
||||
[
|
||||
{ key: 'vector', value: `[${vectors[0]}]` },
|
||||
{ key: 'team_id', value: String(teamId) },
|
||||
{ key: 'tmb_id', value: String(tmbId) },
|
||||
{ key: 'dataset_id', value: datasetId },
|
||||
{ key: 'collection_id', value: collectionId },
|
||||
{ key: 'data_id', value: String(dataId) }
|
||||
]
|
||||
]
|
||||
});
|
||||
return {
|
||||
insertId: rows[0].id
|
||||
};
|
||||
} catch (error) {
|
||||
if (retry <= 0) {
|
||||
return Promise.reject(error);
|
||||
}
|
||||
await delay(500);
|
||||
return insertDatasetDataVector({
|
||||
...props,
|
||||
retry: retry - 1
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
export const updateDatasetDataVector = async (props: {
|
||||
id: string;
|
||||
vectors: number[][];
|
||||
retry?: number;
|
||||
}): Promise<void> => {
|
||||
const { id, vectors, retry = 2 } = props;
|
||||
try {
|
||||
// update pg
|
||||
await PgClient.update(PgDatasetTableName, {
|
||||
where: [['id', id]],
|
||||
values: [{ key: 'vector', value: `[${vectors[0]}]` }]
|
||||
});
|
||||
} catch (error) {
|
||||
if (retry <= 0) {
|
||||
return Promise.reject(error);
|
||||
}
|
||||
await delay(500);
|
||||
return updateDatasetDataVector({
|
||||
...props,
|
||||
retry: retry - 1
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
export const deleteDatasetDataVector = async (
|
||||
props: DeleteDatasetVectorProps & {
|
||||
retry?: number;
|
||||
}
|
||||
): Promise<any> => {
|
||||
const { id, datasetIds, collectionIds, dataIds, retry = 2 } = props;
|
||||
|
||||
const where = await (() => {
|
||||
if (id) return `id=${id}`;
|
||||
if (datasetIds) return `dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})`;
|
||||
if (collectionIds)
|
||||
return `collection_id IN (${collectionIds.map((id) => `'${String(id)}'`).join(',')})`;
|
||||
if (dataIds) return `data_id IN (${dataIds.map((id) => `'${String(id)}'`).join(',')})`;
|
||||
return Promise.reject('deleteDatasetData: no where');
|
||||
})();
|
||||
|
||||
try {
|
||||
await PgClient.delete(PgDatasetTableName, {
|
||||
where: [where]
|
||||
});
|
||||
} catch (error) {
|
||||
if (retry <= 0) {
|
||||
return Promise.reject(error);
|
||||
}
|
||||
await delay(500);
|
||||
return deleteDatasetDataVector({
|
||||
...props,
|
||||
retry: retry - 1
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
export const embeddingRecall = async (
|
||||
props: EmbeddingRecallProps & {
|
||||
vectors: number[][];
|
||||
limit: number;
|
||||
retry?: number;
|
||||
}
|
||||
): Promise<{
|
||||
results: EmbeddingRecallItemType[];
|
||||
}> => {
|
||||
const { vectors, limit, similarity = 0, datasetIds, retry = 2 } = props;
|
||||
|
||||
try {
|
||||
const results: any = await PgClient.query(
|
||||
`BEGIN;
|
||||
SET LOCAL hnsw.ef_search = ${global.systemEnv.pgHNSWEfSearch || 100};
|
||||
select id, collection_id, data_id, (vector <#> '[${vectors[0]}]') * -1 AS score
|
||||
from ${PgDatasetTableName}
|
||||
where dataset_id IN (${datasetIds.map((id) => `'${String(id)}'`).join(',')})
|
||||
AND vector <#> '[${vectors[0]}]' < -${similarity}
|
||||
order by score desc limit ${limit};
|
||||
COMMIT;`
|
||||
);
|
||||
|
||||
const rows = results?.[2]?.rows as PgSearchRawType[];
|
||||
|
||||
// concat same data_id
|
||||
const filterRows: PgSearchRawType[] = [];
|
||||
let set = new Set<string>();
|
||||
for (const row of rows) {
|
||||
if (!set.has(row.data_id)) {
|
||||
filterRows.push(row);
|
||||
set.add(row.data_id);
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
results: filterRows.map((item) => ({
|
||||
id: item.id,
|
||||
collectionId: item.collection_id,
|
||||
dataId: item.data_id,
|
||||
score: item.score
|
||||
}))
|
||||
};
|
||||
} catch (error) {
|
||||
if (retry <= 0) {
|
||||
return Promise.reject(error);
|
||||
}
|
||||
return embeddingRecall(props);
|
||||
}
|
||||
};
|
||||
|
||||
// bill
|
||||
export const getVectorCountByTeamId = async (teamId: string) => {
|
||||
const total = await PgClient.count(PgDatasetTableName, {
|
||||
where: [['team_id', String(teamId)]]
|
||||
});
|
||||
|
||||
return total;
|
||||
};
|
||||
export const getVectorDataByTime = async (start: Date, end: Date) => {
|
||||
const { rows } = await PgClient.query<{ id: string; data_id: string }>(`SELECT id, data_id
|
||||
FROM ${PgDatasetTableName}
|
||||
WHERE createTime BETWEEN '${dayjs(start).format('YYYY-MM-DD')}' AND '${dayjs(end).format(
|
||||
'YYYY-MM-DD 23:59:59'
|
||||
)}';
|
||||
`);
|
||||
|
||||
return rows.map((item) => ({
|
||||
id: item.id,
|
||||
dataId: item.data_id
|
||||
}));
|
||||
};
|
@@ -1,6 +1,5 @@
|
||||
import { Pool } from 'pg';
|
||||
import type { QueryResultRow } from 'pg';
|
||||
import { PgDatasetTableName } from '@fastgpt/global/core/dataset/constant';
|
||||
|
||||
export const connectPg = async (): Promise<Pool> => {
|
||||
if (global.pgClient) {
|
||||
@@ -117,6 +116,7 @@ class PgClass {
|
||||
FROM ${table}
|
||||
${this.getWhereStr(props.where)}
|
||||
`;
|
||||
|
||||
const pg = await connectPg();
|
||||
return pg.query(sql).then((res) => Number(res.rows[0]?.count || 0));
|
||||
}
|
||||
@@ -160,29 +160,5 @@ class PgClass {
|
||||
}
|
||||
}
|
||||
|
||||
export async function initPg() {
|
||||
try {
|
||||
await connectPg();
|
||||
await PgClient.query(`
|
||||
CREATE EXTENSION IF NOT EXISTS vector;
|
||||
CREATE TABLE IF NOT EXISTS ${PgDatasetTableName} (
|
||||
id BIGSERIAL PRIMARY KEY,
|
||||
vector VECTOR(1536) NOT NULL,
|
||||
team_id VARCHAR(50) NOT NULL,
|
||||
tmb_id VARCHAR(50) NOT NULL,
|
||||
dataset_id VARCHAR(50) NOT NULL,
|
||||
collection_id VARCHAR(50) NOT NULL,
|
||||
data_id VARCHAR(50) NOT NULL,
|
||||
createTime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
);
|
||||
CREATE INDEX IF NOT EXISTS vector_index ON ${PgDatasetTableName} USING hnsw (vector vector_ip_ops) WITH (m = 32, ef_construction = 64);
|
||||
`);
|
||||
|
||||
console.log('init pg successful');
|
||||
} catch (error) {
|
||||
console.log('init pg error', error);
|
||||
}
|
||||
}
|
||||
|
||||
export const PgClient = new PgClass();
|
||||
export const Pg = global.pgClient;
|
12
packages/service/common/vectorStore/type.d.ts
vendored
Normal file
12
packages/service/common/vectorStore/type.d.ts
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
import type { Pool } from 'pg';
|
||||
|
||||
declare global {
|
||||
var pgClient: Pool | null;
|
||||
}
|
||||
|
||||
export type EmbeddingRecallItemType = {
|
||||
id: string;
|
||||
collectionId: string;
|
||||
dataId: string;
|
||||
score: number;
|
||||
};
|
73
packages/service/core/ai/embedding/index.ts
Normal file
73
packages/service/core/ai/embedding/index.ts
Normal file
@@ -0,0 +1,73 @@
|
||||
import { getAIApi } from '../config';
|
||||
|
||||
export type GetVectorProps = {
|
||||
model: string;
|
||||
input: string | string[];
|
||||
};
|
||||
|
||||
// text to vector
|
||||
export async function getVectorsByText({
|
||||
model = 'text-embedding-ada-002',
|
||||
input
|
||||
}: GetVectorProps) {
|
||||
if (typeof input === 'string' && !input) {
|
||||
return Promise.reject({
|
||||
code: 500,
|
||||
message: 'input is empty'
|
||||
});
|
||||
} else if (Array.isArray(input)) {
|
||||
for (let i = 0; i < input.length; i++) {
|
||||
if (!input[i]) {
|
||||
return Promise.reject({
|
||||
code: 500,
|
||||
message: 'input array is empty'
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
// 获取 chatAPI
|
||||
const ai = getAIApi();
|
||||
|
||||
// 把输入的内容转成向量
|
||||
const result = await ai.embeddings
|
||||
.create({
|
||||
model,
|
||||
input
|
||||
})
|
||||
.then(async (res) => {
|
||||
if (!res.data) {
|
||||
return Promise.reject('Embedding API 404');
|
||||
}
|
||||
if (!res?.data?.[0]?.embedding) {
|
||||
console.log(res?.data);
|
||||
// @ts-ignore
|
||||
return Promise.reject(res.data?.err?.message || 'Embedding API Error');
|
||||
}
|
||||
return {
|
||||
tokens: res.usage.total_tokens || 0,
|
||||
vectors: await Promise.all(res.data.map((item) => unityDimensional(item.embedding)))
|
||||
};
|
||||
});
|
||||
|
||||
return result;
|
||||
} catch (error) {
|
||||
console.log(`Embedding Error`, error);
|
||||
|
||||
return Promise.reject(error);
|
||||
}
|
||||
}
|
||||
|
||||
function unityDimensional(vector: number[]) {
|
||||
if (vector.length > 1536) {
|
||||
console.log(`当前向量维度为: ${vector.length}, 向量维度不能超过 1536, 已自动截取前 1536 维度`);
|
||||
return vector.slice(0, 1536);
|
||||
}
|
||||
let resultVector = vector;
|
||||
const vectorLen = vector.length;
|
||||
|
||||
const zeroVector = new Array(1536 - vectorLen).fill(0);
|
||||
|
||||
return resultVector.concat(zeroVector);
|
||||
}
|
@@ -26,7 +26,8 @@ export async function createQuestionGuide({
|
||||
});
|
||||
|
||||
const answer = data.choices?.[0]?.message?.content || '';
|
||||
const totalTokens = data.usage?.total_tokens || 0;
|
||||
const inputTokens = data.usage?.prompt_tokens || 0;
|
||||
const outputTokens = data.usage?.completion_tokens || 0;
|
||||
|
||||
const start = answer.indexOf('[');
|
||||
const end = answer.lastIndexOf(']');
|
||||
@@ -34,7 +35,8 @@ export async function createQuestionGuide({
|
||||
if (start === -1 || end === -1) {
|
||||
return {
|
||||
result: [],
|
||||
tokens: totalTokens
|
||||
inputTokens,
|
||||
outputTokens
|
||||
};
|
||||
}
|
||||
|
||||
@@ -46,12 +48,14 @@ export async function createQuestionGuide({
|
||||
try {
|
||||
return {
|
||||
result: JSON.parse(jsonStr),
|
||||
tokens: totalTokens
|
||||
inputTokens,
|
||||
outputTokens
|
||||
};
|
||||
} catch (error) {
|
||||
return {
|
||||
result: [],
|
||||
tokens: totalTokens
|
||||
inputTokens,
|
||||
outputTokens
|
||||
};
|
||||
}
|
||||
}
|
||||
|
@@ -1,11 +1,11 @@
|
||||
import { MongoDatasetData } from './schema';
|
||||
import { deletePgDataById } from './pg';
|
||||
import { MongoDatasetTraining } from '../training/schema';
|
||||
import { delFileByFileIdList, delFileByMetadata } from '../../../common/file/gridfs/controller';
|
||||
import { BucketNameEnum } from '@fastgpt/global/common/file/constants';
|
||||
import { MongoDatasetCollection } from '../collection/schema';
|
||||
import { delay } from '@fastgpt/global/common/system/utils';
|
||||
import { delImgByFileIdList } from '../../../common/file/image/controller';
|
||||
import { deleteDatasetDataVector } from '../../../common/vectorStore/controller';
|
||||
|
||||
/* delete all data by datasetIds */
|
||||
export async function delDatasetRelevantData({ datasetIds }: { datasetIds: string[] }) {
|
||||
@@ -21,7 +21,7 @@ export async function delDatasetRelevantData({ datasetIds }: { datasetIds: strin
|
||||
// delete dataset.datas
|
||||
await MongoDatasetData.deleteMany({ datasetId: { $in: datasetIds } });
|
||||
// delete pg data
|
||||
await deletePgDataById(`dataset_id IN ('${datasetIds.join("','")}')`);
|
||||
await deleteDatasetDataVector({ datasetIds });
|
||||
|
||||
// delete collections
|
||||
await MongoDatasetCollection.deleteMany({
|
||||
@@ -56,7 +56,7 @@ export async function delCollectionRelevantData({
|
||||
// delete dataset.datas
|
||||
await MongoDatasetData.deleteMany({ collectionId: { $in: collectionIds } });
|
||||
// delete pg data
|
||||
await deletePgDataById(`collection_id IN ('${collectionIds.join("','")}')`);
|
||||
await deleteDatasetDataVector({ collectionIds });
|
||||
|
||||
// delete collections
|
||||
await MongoDatasetCollection.deleteMany({
|
||||
@@ -76,6 +76,6 @@ export async function delCollectionRelevantData({
|
||||
* delete one data by mongoDataId
|
||||
*/
|
||||
export async function delDatasetDataByDataId(mongoDataId: string) {
|
||||
await deletePgDataById(['data_id', mongoDataId]);
|
||||
await deleteDatasetDataVector({ dataIds: [mongoDataId] });
|
||||
await MongoDatasetData.findByIdAndDelete(mongoDataId);
|
||||
}
|
||||
|
@@ -1,28 +0,0 @@
|
||||
import { PgDatasetTableName } from '@fastgpt/global/core/dataset/constant';
|
||||
import { delay } from '@fastgpt/global/common/system/utils';
|
||||
import { PgClient } from '../../../common/pg';
|
||||
|
||||
export async function deletePgDataById(
|
||||
where: ['id' | 'dataset_id' | 'collection_id' | 'data_id', string] | string
|
||||
) {
|
||||
let retry = 2;
|
||||
async function deleteData(): Promise<any> {
|
||||
try {
|
||||
await PgClient.delete(PgDatasetTableName, {
|
||||
where: [where]
|
||||
});
|
||||
} catch (error) {
|
||||
if (--retry < 0) {
|
||||
return Promise.reject(error);
|
||||
}
|
||||
await delay(500);
|
||||
return deleteData();
|
||||
}
|
||||
}
|
||||
|
||||
await deleteData();
|
||||
|
||||
return {
|
||||
tokenLen: 0
|
||||
};
|
||||
}
|
@@ -85,7 +85,6 @@ const DatasetDataSchema = new Schema({
|
||||
});
|
||||
|
||||
try {
|
||||
DatasetDataSchema.index({ teamId: 1 });
|
||||
DatasetDataSchema.index({ datasetId: 1 });
|
||||
DatasetDataSchema.index({ collectionId: 1 });
|
||||
DatasetDataSchema.index({ updateTime: -1 });
|
||||
|
@@ -2,7 +2,7 @@ import { connectionMongo, type Model } from '../../common/mongo';
|
||||
const { Schema, model, models } = connectionMongo;
|
||||
import type { OpenApiSchema } from '@fastgpt/global/support/openapi/type';
|
||||
import { PRICE_SCALE } from '@fastgpt/global/support/wallet/bill/constants';
|
||||
import { formatPrice } from '@fastgpt/global/support/wallet/bill/tools';
|
||||
import { formatStorePrice2Read } from '@fastgpt/global/support/wallet/bill/tools';
|
||||
import {
|
||||
TeamCollectionName,
|
||||
TeamMemberCollectionName
|
||||
@@ -48,7 +48,7 @@ const OpenApiSchema = new Schema(
|
||||
// total usage. value from bill total
|
||||
type: Number,
|
||||
default: 0,
|
||||
get: (val: number) => formatPrice(val)
|
||||
get: (val: number) => formatStorePrice2Read(val)
|
||||
},
|
||||
limit: {
|
||||
expiredTime: {
|
||||
@@ -59,7 +59,7 @@ const OpenApiSchema = new Schema(
|
||||
type: Number,
|
||||
default: -1,
|
||||
set: (val: number) => val * PRICE_SCALE,
|
||||
get: (val: number) => formatPrice(val)
|
||||
get: (val: number) => formatStorePrice2Read(val)
|
||||
}
|
||||
}
|
||||
},
|
||||
|
@@ -43,6 +43,7 @@ const TeamMemberSchema = new Schema({
|
||||
});
|
||||
|
||||
try {
|
||||
TeamMemberSchema.index({ teamId: 1 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
@@ -29,10 +29,14 @@ const TeamSchema = new Schema({
|
||||
maxSize: {
|
||||
type: Number,
|
||||
default: 5
|
||||
},
|
||||
lastDatasetBillTime: {
|
||||
type: Date
|
||||
}
|
||||
});
|
||||
|
||||
try {
|
||||
TeamSchema.index({ lastDatasetBillTime: -1 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
@@ -25,14 +25,16 @@ export const createTrainingBill = async ({
|
||||
{
|
||||
moduleName: 'wallet.moduleName.index',
|
||||
model: vectorModel,
|
||||
amount: 0,
|
||||
tokenLen: 0
|
||||
inputTokens: 0,
|
||||
outputTokens: 0,
|
||||
amount: 0
|
||||
},
|
||||
{
|
||||
moduleName: 'wallet.moduleName.qa',
|
||||
model: agentModel,
|
||||
amount: 0,
|
||||
tokenLen: 0
|
||||
inputTokens: 0,
|
||||
outputTokens: 0,
|
||||
amount: 0
|
||||
}
|
||||
],
|
||||
total: 0
|
||||
|
@@ -52,7 +52,8 @@ const BillSchema = new Schema({
|
||||
});
|
||||
|
||||
try {
|
||||
BillSchema.index({ userId: 1 });
|
||||
BillSchema.index({ teamId: 1 });
|
||||
BillSchema.index({ tmbId: 1 });
|
||||
BillSchema.index({ time: 1 }, { expireAfterSeconds: 90 * 24 * 60 * 60 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
|
Reference in New Issue
Block a user