V4.7-alpha (#985)

Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
This commit is contained in:
Archer
2024-03-13 10:50:02 +08:00
committed by GitHub
parent 5bca15f12f
commit 9501c3f3a1
170 changed files with 5786 additions and 2342 deletions

View File

@@ -1,10 +1,15 @@
/* Only the token of gpt-3.5-turbo is used */
import type { ChatItemType } from '../../../core/chat/type';
import { Tiktoken } from 'js-tiktoken/lite';
import { adaptChat2GptMessages } from '../../../core/chat/adapt';
import { ChatCompletionRequestMessageRoleEnum } from '../../../core/ai/constant';
import { chats2GPTMessages } from '../../../core/chat/adapt';
import encodingJson from './cl100k_base.json';
import { ChatMessageItemType } from '../../../core/ai/type';
import {
ChatCompletionMessageParam,
ChatCompletionContentPart,
ChatCompletionCreateParams,
ChatCompletionTool
} from '../../../core/ai/type';
import { ChatCompletionRequestMessageRoleEnum } from '../../../core/ai/constants';
/* init tikToken obj */
export function getTikTokenEnc() {
@@ -29,18 +34,25 @@ export function getTikTokenEnc() {
/* count one prompt tokens */
export function countPromptTokens(
prompt = '',
role: '' | `${ChatCompletionRequestMessageRoleEnum}` = '',
tools?: any
prompt: string | ChatCompletionContentPart[] | null | undefined = '',
role: '' | `${ChatCompletionRequestMessageRoleEnum}` = ''
) {
const enc = getTikTokenEnc();
const toolText = tools
? JSON.stringify(tools)
.replace('"', '')
.replace('\n', '')
.replace(/( ){2,}/g, ' ')
: '';
const text = `${role}\n${prompt}\n${toolText}`.trim();
const promptText = (() => {
if (!prompt) return '';
if (typeof prompt === 'string') return prompt;
let promptText = '';
prompt.forEach((item) => {
if (item.type === 'text') {
promptText += item.text;
} else if (item.type === 'image_url') {
promptText += item.image_url.url;
}
});
return promptText;
})();
const text = `${role}\n${promptText}`.trim();
try {
const encodeText = enc.encode(text);
@@ -50,15 +62,66 @@ export function countPromptTokens(
return text.length;
}
}
export const countToolsTokens = (
tools?: ChatCompletionTool[] | ChatCompletionCreateParams.Function[]
) => {
if (!tools || tools.length === 0) return 0;
const enc = getTikTokenEnc();
const toolText = tools
? JSON.stringify(tools)
.replace('"', '')
.replace('\n', '')
.replace(/( ){2,}/g, ' ')
: '';
return enc.encode(toolText).length;
};
/* count messages tokens */
export const countMessagesTokens = (messages: ChatItemType[], tools?: any) => {
const adaptMessages = adaptChat2GptMessages({ messages, reserveId: true });
export const countMessagesTokens = (messages: ChatItemType[]) => {
const adaptMessages = chats2GPTMessages({ messages, reserveId: true });
return countGptMessagesTokens(adaptMessages, tools);
return countGptMessagesTokens(adaptMessages);
};
export const countGptMessagesTokens = (messages: ChatMessageItemType[], tools?: any) =>
messages.reduce((sum, item) => sum + countPromptTokens(item.content, item.role, tools), 0);
export const countGptMessagesTokens = (
messages: ChatCompletionMessageParam[],
tools?: ChatCompletionTool[],
functionCall?: ChatCompletionCreateParams.Function[]
) =>
messages.reduce((sum, item) => {
// Evaluates the text of toolcall and functioncall
const functionCallPrompt = (() => {
let prompt = '';
if (item.role === ChatCompletionRequestMessageRoleEnum.Assistant) {
const toolCalls = item.tool_calls;
prompt +=
toolCalls
?.map((item) => `${item?.function?.name} ${item?.function?.arguments}`.trim())
?.join('') || '';
const functionCall = item.function_call;
prompt += `${functionCall?.name} ${functionCall?.arguments}`.trim();
}
return prompt;
})();
const contentPrompt = (() => {
if (!item.content) return '';
if (typeof item.content === 'string') return item.content;
return item.content
.map((item) => {
if (item.type === 'text') return item.text;
return '';
})
.join('');
})();
return sum + countPromptTokens(`${contentPrompt}${functionCallPrompt}`, item.role);
}, 0) +
countToolsTokens(tools) +
countToolsTokens(functionCall);
/* slice messages from top to bottom by maxTokens */
export function sliceMessagesTB({
@@ -68,7 +131,7 @@ export function sliceMessagesTB({
messages: ChatItemType[];
maxTokens: number;
}) {
const adaptMessages = adaptChat2GptMessages({ messages, reserveId: true });
const adaptMessages = chats2GPTMessages({ messages, reserveId: true });
let reduceTokens = maxTokens;
let result: ChatItemType[] = [];

View File

@@ -1,7 +0,0 @@
export enum ChatCompletionRequestMessageRoleEnum {
'System' = 'system',
'User' = 'user',
'Assistant' = 'assistant',
'Function' = 'function',
'Tool' = 'tool'
}

View File

@@ -0,0 +1,27 @@
export enum ChatCompletionRequestMessageRoleEnum {
'System' = 'system',
'User' = 'user',
'Assistant' = 'assistant',
'Function' = 'function',
'Tool' = 'tool'
}
export enum ChatMessageTypeEnum {
text = 'text',
image_url = 'image_url'
}
export enum LLMModelTypeEnum {
all = 'all',
classify = 'classify',
extractFields = 'extractFields',
toolCall = 'toolCall',
queryExtension = 'queryExtension'
}
export const llmModelTypeFilterMap = {
[LLMModelTypeEnum.all]: 'model',
[LLMModelTypeEnum.classify]: 'usedInClassify',
[LLMModelTypeEnum.extractFields]: 'usedInExtractFields',
[LLMModelTypeEnum.toolCall]: 'usedInToolCall',
[LLMModelTypeEnum.queryExtension]: 'usedInQueryExtension'
};

View File

@@ -10,7 +10,13 @@ export type LLMModelItemType = {
censor?: boolean;
vision?: boolean;
datasetProcess?: boolean;
// diff function model
datasetProcess?: boolean; // dataset
usedInClassify?: boolean; // classify
usedInExtractFields?: boolean; // extract fields
usedInToolCall?: boolean; // tool call
usedInQueryExtension?: boolean; // query extension
functionCall: boolean;
toolChoice: boolean;

View File

@@ -1,20 +1,33 @@
import openai from 'openai';
import type {
ChatCompletion,
ChatCompletionCreateParams,
ChatCompletionMessageToolCall,
ChatCompletionChunk,
ChatCompletionMessageParam,
ChatCompletionContentPart
ChatCompletionToolMessageParam,
ChatCompletionAssistantMessageParam
} from 'openai/resources';
import { ChatMessageTypeEnum } from './constants';
export type ChatCompletionContentPart = ChatCompletionContentPart;
export type ChatCompletionCreateParams = ChatCompletionCreateParams;
export type ChatMessageItemType = Omit<ChatCompletionMessageParam, 'name'> & {
name?: any;
export * from 'openai/resources';
export type ChatCompletionMessageParam = ChatCompletionMessageParam & {
dataId?: string;
content: any;
} & any;
};
export type ChatCompletionToolMessageParam = ChatCompletionToolMessageParam & { name: string };
export type ChatCompletionAssistantToolParam = {
role: 'assistant';
tool_calls: ChatCompletionMessageToolCall[];
};
export type ChatCompletion = ChatCompletion;
export type ChatCompletionMessageToolCall = ChatCompletionMessageToolCall & {
toolName?: string;
toolAvatar?: string;
};
export type ChatCompletionMessageFunctionCall = ChatCompletionAssistantMessageParam.FunctionCall & {
id?: string;
toolName?: string;
toolAvatar?: string;
};
export type StreamChatType = Stream<ChatCompletionChunk>;
export type PromptTemplateItem = {
@@ -22,3 +35,6 @@ export type PromptTemplateItem = {
desc: string;
value: string;
};
export default openai;
export * from 'openai';

View File

@@ -1,40 +1,298 @@
import type { ChatItemType } from '../../core/chat/type.d';
import { ChatRoleEnum } from '../../core/chat/constants';
import { ChatCompletionRequestMessageRoleEnum } from '../../core/ai/constant';
import type { ChatMessageItemType } from '../../core/ai/type.d';
import type {
ChatItemType,
ChatItemValueItemType,
RuntimeUserPromptType,
UserChatItemType
} from '../../core/chat/type.d';
import { ChatFileTypeEnum, ChatItemValueTypeEnum, ChatRoleEnum } from '../../core/chat/constants';
import type {
ChatCompletionContentPart,
ChatCompletionFunctionMessageParam,
ChatCompletionMessageFunctionCall,
ChatCompletionMessageParam,
ChatCompletionMessageToolCall,
ChatCompletionToolMessageParam
} from '../../core/ai/type.d';
import { ChatCompletionRequestMessageRoleEnum } from '../../core/ai/constants';
const chat2Message = {
[ChatRoleEnum.AI]: ChatCompletionRequestMessageRoleEnum.Assistant,
[ChatRoleEnum.Human]: ChatCompletionRequestMessageRoleEnum.User,
[ChatRoleEnum.System]: ChatCompletionRequestMessageRoleEnum.System,
[ChatRoleEnum.Function]: ChatCompletionRequestMessageRoleEnum.Function,
[ChatRoleEnum.Tool]: ChatCompletionRequestMessageRoleEnum.Tool
};
const message2Chat = {
const GPT2Chat = {
[ChatCompletionRequestMessageRoleEnum.System]: ChatRoleEnum.System,
[ChatCompletionRequestMessageRoleEnum.User]: ChatRoleEnum.Human,
[ChatCompletionRequestMessageRoleEnum.Assistant]: ChatRoleEnum.AI,
[ChatCompletionRequestMessageRoleEnum.Function]: ChatRoleEnum.Function,
[ChatCompletionRequestMessageRoleEnum.Tool]: ChatRoleEnum.Tool
[ChatCompletionRequestMessageRoleEnum.Function]: ChatRoleEnum.AI,
[ChatCompletionRequestMessageRoleEnum.Tool]: ChatRoleEnum.AI
};
export function adaptRole_Chat2Message(role: `${ChatRoleEnum}`) {
return chat2Message[role];
}
export function adaptRole_Message2Chat(role: `${ChatCompletionRequestMessageRoleEnum}`) {
return message2Chat[role];
return GPT2Chat[role];
}
export const adaptChat2GptMessages = ({
export const simpleUserContentPart = (content: ChatCompletionContentPart[]) => {
if (content.length === 1 && content[0].type === 'text') {
return content[0].text;
}
return content;
};
export const chats2GPTMessages = ({
messages,
reserveId
reserveId,
reserveTool = false
}: {
messages: ChatItemType[];
reserveId: boolean;
}): ChatMessageItemType[] => {
return messages.map((item) => ({
...(reserveId && { dataId: item.dataId }),
role: chat2Message[item.obj],
content: item.value || ''
}));
reserveTool?: boolean;
}): ChatCompletionMessageParam[] => {
let results: ChatCompletionMessageParam[] = [];
messages.forEach((item) => {
const dataId = reserveId ? item.dataId : undefined;
if (item.obj === ChatRoleEnum.Human) {
const value = item.value
.map((item) => {
if (item.type === ChatItemValueTypeEnum.text) {
return {
type: 'text',
text: item.text?.content || ''
};
}
if (item.type === 'file' && item.file?.type === ChatFileTypeEnum.image) {
return {
type: 'image_url',
image_url: {
url: item.file?.url || ''
}
};
}
return;
})
.filter(Boolean) as ChatCompletionContentPart[];
results.push({
dataId,
role: ChatCompletionRequestMessageRoleEnum.User,
content: simpleUserContentPart(value)
});
} else if (item.obj === ChatRoleEnum.System) {
const content = item.value?.[0]?.text?.content;
if (content) {
results.push({
dataId,
role: ChatCompletionRequestMessageRoleEnum.System,
content
});
}
} else {
item.value.forEach((value) => {
if (value.type === ChatItemValueTypeEnum.tool && value.tools && reserveTool) {
const tool_calls: ChatCompletionMessageToolCall[] = [];
const toolResponse: ChatCompletionToolMessageParam[] = [];
value.tools.forEach((tool) => {
tool_calls.push({
id: tool.id,
type: 'function',
function: {
name: tool.functionName,
arguments: tool.params
}
});
toolResponse.push({
tool_call_id: tool.id,
role: ChatCompletionRequestMessageRoleEnum.Tool,
name: tool.functionName,
content: tool.response
});
});
results = results
.concat({
dataId,
role: ChatCompletionRequestMessageRoleEnum.Assistant,
tool_calls
})
.concat(toolResponse);
} else if (value.text) {
results.push({
dataId,
role: ChatCompletionRequestMessageRoleEnum.Assistant,
content: value.text.content
});
}
});
}
});
return results;
};
export const GPTMessages2Chats = (
messages: ChatCompletionMessageParam[],
reserveTool = true
): ChatItemType[] => {
return messages
.map((item) => {
const value: ChatItemType['value'] = [];
const obj = GPT2Chat[item.role];
if (
obj === ChatRoleEnum.System &&
item.role === ChatCompletionRequestMessageRoleEnum.System
) {
value.push({
type: ChatItemValueTypeEnum.text,
text: {
content: item.content
}
});
} else if (
obj === ChatRoleEnum.Human &&
item.role === ChatCompletionRequestMessageRoleEnum.User
) {
if (typeof item.content === 'string') {
value.push({
type: ChatItemValueTypeEnum.text,
text: {
content: item.content
}
});
} else if (Array.isArray(item.content)) {
item.content.forEach((item) => {
if (item.type === 'text') {
value.push({
type: ChatItemValueTypeEnum.text,
text: {
content: item.text
}
});
} else if (item.type === 'image_url') {
value.push({
//@ts-ignore
type: 'file',
file: {
type: ChatFileTypeEnum.image,
name: '',
url: item.image_url.url
}
});
}
});
// @ts-ignore
}
} else if (
obj === ChatRoleEnum.AI &&
item.role === ChatCompletionRequestMessageRoleEnum.Assistant
) {
if (item.content && typeof item.content === 'string') {
value.push({
type: ChatItemValueTypeEnum.text,
text: {
content: item.content
}
});
} else if (item.tool_calls && reserveTool) {
// save tool calls
const toolCalls = item.tool_calls as ChatCompletionMessageToolCall[];
value.push({
//@ts-ignore
type: ChatItemValueTypeEnum.tool,
tools: toolCalls.map((tool) => {
let toolResponse =
messages.find(
(msg) =>
msg.role === ChatCompletionRequestMessageRoleEnum.Tool &&
msg.tool_call_id === tool.id
)?.content || '';
toolResponse =
typeof toolResponse === 'string' ? toolResponse : JSON.stringify(toolResponse);
return {
id: tool.id,
toolName: tool.toolName || '',
toolAvatar: tool.toolAvatar || '',
functionName: tool.function.name,
params: tool.function.arguments,
response: toolResponse as string
};
})
});
} else if (item.function_call && reserveTool) {
const functionCall = item.function_call as ChatCompletionMessageFunctionCall;
const functionResponse = messages.find(
(msg) =>
msg.role === ChatCompletionRequestMessageRoleEnum.Function &&
msg.name === item.function_call?.name
) as ChatCompletionFunctionMessageParam;
if (functionResponse) {
value.push({
//@ts-ignore
type: ChatItemValueTypeEnum.tool,
tools: [
{
id: functionCall.id || '',
toolName: functionCall.toolName || '',
toolAvatar: functionCall.toolAvatar || '',
functionName: functionCall.name,
params: functionCall.arguments,
response: functionResponse.content || ''
}
]
});
}
}
}
return {
dataId: item.dataId,
obj,
value
} as ChatItemType;
})
.filter((item) => item.value.length > 0);
};
export const chatValue2RuntimePrompt = (value: ChatItemValueItemType[]): RuntimeUserPromptType => {
const prompt: RuntimeUserPromptType = {
files: [],
text: ''
};
value.forEach((item) => {
if (item.type === 'file' && item.file) {
prompt.files?.push(item.file);
} else if (item.text) {
prompt.text += item.text.content;
}
});
return prompt;
};
export const runtimePrompt2ChatsValue = (
prompt: RuntimeUserPromptType
): UserChatItemType['value'] => {
const value: UserChatItemType['value'] = [];
if (prompt.files) {
prompt.files.forEach((file) => {
value.push({
type: ChatItemValueTypeEnum.file,
file
});
});
}
if (prompt.text) {
value.push({
type: ChatItemValueTypeEnum.text,
text: {
content: prompt.text
}
});
}
return value;
};
export const getSystemPrompt = (prompt?: string): ChatItemType[] => {
if (!prompt) return [];
return [
{
obj: ChatRoleEnum.System,
value: [{ type: ChatItemValueTypeEnum.text, text: { content: prompt } }]
}
];
};

View File

@@ -1,28 +1,30 @@
export enum ChatRoleEnum {
System = 'System',
Human = 'Human',
AI = 'AI',
Function = 'Function',
Tool = 'Tool'
AI = 'AI'
}
export const ChatRoleMap = {
[ChatRoleEnum.System]: {
name: '系统提示词'
name: '系统'
},
[ChatRoleEnum.Human]: {
name: '用户'
},
[ChatRoleEnum.AI]: {
name: 'AI'
},
[ChatRoleEnum.Function]: {
name: 'Function'
},
[ChatRoleEnum.Tool]: {
name: 'Tool'
}
};
export enum ChatFileTypeEnum {
image = 'image',
file = 'file'
}
export enum ChatItemValueTypeEnum {
text = 'text',
file = 'file',
tool = 'tool'
}
export enum ChatSourceEnum {
test = 'test',
online = 'online',

View File

@@ -1,11 +1,20 @@
import { ClassifyQuestionAgentItemType } from '../module/type';
import { SearchDataResponseItemType } from '../dataset/type';
import { ChatRoleEnum, ChatSourceEnum, ChatStatusEnum } from './constants';
import {
ChatFileTypeEnum,
ChatItemValueTypeEnum,
ChatRoleEnum,
ChatSourceEnum,
ChatStatusEnum
} from './constants';
import { FlowNodeTypeEnum } from '../module/node/constant';
import { ModuleOutputKeyEnum } from '../module/constants';
import { DispatchNodeResponseKeyEnum } from '../module/runtime/constants';
import { AppSchema } from '../app/type';
import type { AppSchema as AppType } from '@fastgpt/global/core/app/type.d';
import { DatasetSearchModeEnum } from '../dataset/constants';
import { ChatBoxInputType } from '../../../../projects/app/src/components/ChatBox/type';
import { DispatchNodeResponseType } from '../module/runtime/type.d';
export type ChatSchema = {
_id: string;
@@ -30,7 +39,53 @@ export type ChatWithAppSchema = Omit<ChatSchema, 'appId'> & {
appId: AppSchema;
};
export type ChatItemSchema = {
export type UserChatItemValueItemType = {
type: ChatItemValueTypeEnum.text | ChatItemValueTypeEnum.file;
text?: {
content: string;
};
file?: {
type: `${ChatFileTypeEnum}`;
name?: string;
url: string;
};
};
export type UserChatItemType = {
obj: ChatRoleEnum.Human;
value: UserChatItemValueItemType[];
};
export type SystemChatItemValueItemType = {
type: ChatItemValueTypeEnum.text;
text?: {
content: string;
};
};
export type SystemChatItemType = {
obj: ChatRoleEnum.System;
value: SystemChatItemValueItemType[];
};
export type AIChatItemValueItemType = {
type: ChatItemValueTypeEnum.text | ChatItemValueTypeEnum.tool;
text?: {
content: string;
};
tools?: ToolModuleResponseItemType[];
};
export type AIChatItemType = {
obj: ChatRoleEnum.AI;
value: AIChatItemValueItemType[];
userGoodFeedback?: string;
userBadFeedback?: string;
customFeedbacks?: string[];
adminFeedback?: AdminFbkType;
[DispatchNodeResponseKeyEnum.nodeResponse]?: ChatHistoryItemResType[];
};
export type ChatItemValueItemType =
| UserChatItemValueItemType
| SystemChatItemValueItemType
| AIChatItemValueItemType;
export type ChatItemSchema = (UserChatItemType | SystemChatItemType | AIChatItemType) & {
dataId: string;
chatId: string;
userId: string;
@@ -38,13 +93,6 @@ export type ChatItemSchema = {
tmbId: string;
appId: string;
time: Date;
obj: `${ChatRoleEnum}`;
value: string;
userGoodFeedback?: string;
userBadFeedback?: string;
customFeedbacks?: string[];
adminFeedback?: AdminFbkType;
[ModuleOutputKeyEnum.responseData]?: ChatHistoryItemResType[];
};
export type AdminFbkType = {
@@ -56,22 +104,16 @@ export type AdminFbkType = {
};
/* --------- chat item ---------- */
export type ChatItemType = {
export type ChatItemType = (UserChatItemType | SystemChatItemType | AIChatItemType) & {
dataId?: string;
obj: ChatItemSchema['obj'];
value: any;
userGoodFeedback?: string;
userBadFeedback?: string;
customFeedbacks?: ChatItemSchema['customFeedbacks'];
adminFeedback?: ChatItemSchema['feedback'];
[ModuleOutputKeyEnum.responseData]?: ChatHistoryItemResType[];
};
export type ChatSiteItemType = ChatItemType & {
export type ChatSiteItemType = (UserChatItemType | SystemChatItemType | AIChatItemType) & {
dataId?: string;
status: `${ChatStatusEnum}`;
moduleName?: string;
ttsBuffer?: Uint8Array;
};
} & ChatBoxInputType;
/* --------- team chat --------- */
export type ChatAppListSchema = {
@@ -93,60 +135,25 @@ export type ChatHistoryItemType = HistoryItemType & {
};
/* ------- response data ------------ */
export type moduleDispatchResType = {
// common
moduleLogo?: string;
runningTime?: number;
query?: string;
textOutput?: string;
// bill
tokens?: number;
model?: string;
contextTotalLen?: number;
totalPoints?: number;
// chat
temperature?: number;
maxToken?: number;
quoteList?: SearchDataResponseItemType[];
historyPreview?: ChatItemType[]; // completion context array. history will slice
// dataset search
similarity?: number;
limit?: number;
searchMode?: `${DatasetSearchModeEnum}`;
searchUsingReRank?: boolean;
extensionModel?: string;
extensionResult?: string;
extensionTokens?: number;
// cq
cqList?: ClassifyQuestionAgentItemType[];
cqResult?: string;
// content extract
extractDescription?: string;
extractResult?: Record<string, any>;
// http
params?: Record<string, any>;
body?: Record<string, any>;
headers?: Record<string, any>;
httpResult?: Record<string, any>;
// plugin output
pluginOutput?: Record<string, any>;
pluginDetail?: ChatHistoryItemResType[];
// tf switch
tfSwitchResult?: boolean;
// abandon
tokens?: number;
};
export type ChatHistoryItemResType = moduleDispatchResType & {
export type ChatHistoryItemResType = DispatchNodeResponseType & {
moduleType: `${FlowNodeTypeEnum}`;
moduleName: string;
};
/* One tool run response */
export type ToolRunResponseItemType = Record<string, any> | Array;
/* tool module response */
export type ToolModuleResponseItemType = {
id: string;
toolName: string; // tool name
toolAvatar: string;
params: string; // tool params
response: string;
functionName: string;
};
/* dispatch run time */
export type RuntimeUserPromptType = {
files?: UserChatItemValueItemType['file'][];
text: string;
};

View File

@@ -1,6 +1,79 @@
import { IMG_BLOCK_KEY, FILE_BLOCK_KEY } from './constants';
import { DispatchNodeResponseType } from '../module/runtime/type';
import { FlowNodeInputTypeEnum, FlowNodeTypeEnum } from '../module/node/constant';
import { ChatItemValueTypeEnum, ChatRoleEnum } from './constants';
import { ChatHistoryItemResType, ChatItemType } from './type.d';
export function chatContentReplaceBlock(content: string = '') {
const regex = new RegExp(`\`\`\`(${IMG_BLOCK_KEY})\\n([\\s\\S]*?)\`\`\``, 'g');
return content.replace(regex, '').trim();
}
export const getChatTitleFromChatMessage = (message?: ChatItemType, defaultValue = '新对话') => {
// @ts-ignore
const textMsg = message?.value.find((item) => item.type === ChatItemValueTypeEnum.text);
if (textMsg?.text?.content) {
return textMsg.text.content.slice(0, 20);
}
return defaultValue;
};
export const getHistoryPreview = (
completeMessages: ChatItemType[]
): {
obj: `${ChatRoleEnum}`;
value: string;
}[] => {
return completeMessages.map((item, i) => {
if (item.obj === ChatRoleEnum.System || i >= completeMessages.length - 2) {
return {
obj: item.obj,
value: item.value?.[0]?.text?.content || ''
};
}
const content = item.value
.map((item) => {
if (item.text?.content) {
const content =
item.text.content.length > 20
? `${item.text.content.slice(0, 20)}...`
: item.text.content;
return content;
}
return '';
})
.filter(Boolean)
.join('\n');
return {
obj: item.obj,
value: content
};
});
};
export const filterPublicNodeResponseData = ({
flowResponses = []
}: {
flowResponses?: ChatHistoryItemResType[];
}) => {
const filedList = ['quoteList', 'moduleType'];
const filterModuleTypeList: any[] = [
FlowNodeTypeEnum.pluginModule,
FlowNodeTypeEnum.datasetSearchNode,
FlowNodeTypeEnum.tools
];
return flowResponses
.filter((item) => filterModuleTypeList.includes(item.moduleType))
.map((item) => {
const obj: DispatchNodeResponseType = {};
for (let key in item) {
if (key === 'toolDetail' || key === 'pluginDetail') {
// @ts-ignore
obj[key] = filterPublicNodeResponseData({ flowResponses: item[key] });
} else if (filedList.includes(key)) {
// @ts-ignore
obj[key] = item[key];
}
}
return obj as ChatHistoryItemResType;
});
};

View File

@@ -83,17 +83,17 @@ export const TrainingTypeMap = {
[TrainingModeEnum.chunk]: {
label: 'core.dataset.training.Chunk mode',
tooltip: 'core.dataset.import.Chunk Split Tip',
isPlus: true
openSource: true
},
[TrainingModeEnum.auto]: {
label: 'core.dataset.training.Auto mode',
tooltip: 'core.dataset.training.Auto mode Tip',
isPlus: true
openSource: false
},
[TrainingModeEnum.qa]: {
label: 'core.dataset.training.QA mode',
tooltip: 'core.dataset.import.QA Import Tip',
isPlus: true
openSource: true
}
};

View File

@@ -21,7 +21,10 @@ export enum ModuleIOValueTypeEnum {
// plugin special type
selectApp = 'selectApp',
selectDataset = 'selectDataset'
selectDataset = 'selectDataset',
// tool
tools = 'tools'
}
/* reg: modulename key */
@@ -89,12 +92,10 @@ export enum ModuleInputKeyEnum {
export enum ModuleOutputKeyEnum {
// common
responseData = 'responseData',
moduleDispatchBills = 'moduleDispatchBills',
userChatInput = 'userChatInput',
finish = 'finish',
history = 'history',
answerText = 'answerText', // answer module text key
answerText = 'answerText', // module answer. the value will be show and save to history
success = 'success',
failed = 'failed',
text = 'system_text',
@@ -110,7 +111,13 @@ export enum ModuleOutputKeyEnum {
// tf switch
resultTrue = 'system_resultTrue',
resultFalse = 'system_resultFalse'
resultFalse = 'system_resultFalse',
// tools
selectedTools = 'selectedTools',
// http
httpRawResponse = 'httpRawResponse'
}
export enum VariableInputEnum {

View File

@@ -56,7 +56,8 @@ export enum FlowNodeTypeEnum {
pluginModule = 'pluginModule',
pluginInput = 'pluginInput',
pluginOutput = 'pluginOutput',
queryExtension = 'cfr'
queryExtension = 'cfr',
tools = 'tools'
// abandon
}

View File

@@ -2,6 +2,7 @@ import { FlowNodeInputTypeEnum, FlowNodeOutputTypeEnum, FlowNodeTypeEnum } from
import { ModuleIOValueTypeEnum, ModuleInputKeyEnum, ModuleOutputKeyEnum } from '../constants';
import { SelectedDatasetType } from '../api';
import { EditInputFieldMap, EditOutputFieldMap } from './type';
import { LLMModelTypeEnum } from '../../ai/constants';
export type FlowNodeChangeProps = {
moduleId: string;
@@ -28,6 +29,7 @@ export type FlowNodeInputItemType = {
label: string;
description?: string;
required?: boolean;
toolDescription?: string; // If this field is not empty, it is entered as a tool
edit?: boolean; // Whether to allow editing
editField?: EditInputFieldMap;
@@ -49,6 +51,8 @@ export type FlowNodeInputItemType = {
step?: number; // slider
max?: number; // slider, number input
min?: number; // slider, number input
llmModelType?: `${LLMModelTypeEnum}`;
};
export type FlowNodeOutputTargetItemType = {
@@ -62,6 +66,8 @@ export type FlowNodeOutputItemType = {
label?: string;
description?: string;
required?: boolean;
defaultValue?: any;
edit?: boolean;
editField?: EditOutputFieldMap;
@@ -74,12 +80,14 @@ export type FlowNodeOutputItemType = {
export type EditInputFieldMap = EditOutputFieldMap & {
inputType?: boolean;
required?: boolean;
isToolInput?: boolean;
};
export type EditOutputFieldMap = {
name?: boolean;
key?: boolean;
description?: boolean;
dataType?: boolean;
defaultValue?: boolean;
};
export type EditNodeFieldType = {
inputType?: `${FlowNodeInputTypeEnum}`; // input type
@@ -89,6 +97,8 @@ export type EditNodeFieldType = {
label?: string;
description?: string;
valueType?: `${ModuleIOValueTypeEnum}`;
isToolInput?: boolean;
defaultValue?: string;
};
/* ------------- item type --------------- */

View File

@@ -0,0 +1,19 @@
export enum SseResponseEventEnum {
error = 'error',
answer = 'answer', // animation stream
fastAnswer = 'fastAnswer', // direct answer text, not animation
flowNodeStatus = 'flowNodeStatus', // update node status
toolCall = 'toolCall', // tool start
toolParams = 'toolParams', // tool params return
toolResponse = 'toolResponse', // tool response return
flowResponses = 'flowResponses' // sse response request
}
export enum DispatchNodeResponseKeyEnum {
nodeResponse = 'responseData', // run node response
nodeDispatchUsages = 'nodeDispatchUsages', // the node bill.
childrenResponses = 'childrenResponses', // Some nodes make recursive calls that need to be returned
toolResponses = 'toolResponses', // The result is passed back to the tool node for use
assistantResponses = 'assistantResponses' // assistant response
}

View File

@@ -0,0 +1,101 @@
import { ChatNodeUsageType } from '../../../support/wallet/bill/type';
import { ChatItemValueItemType, ToolRunResponseItemType } from '../../chat/type';
import { FlowNodeInputItemType, FlowNodeOutputItemType } from '../node/type';
import { ModuleItemType } from '../type';
import { DispatchNodeResponseKeyEnum } from './constants';
export type RunningModuleItemType = {
name: ModuleItemType['name'];
avatar: ModuleItemType['avatar'];
intro?: ModuleItemType['intro'];
moduleId: ModuleItemType['moduleId'];
flowType: ModuleItemType['flowType'];
showStatus?: ModuleItemType['showStatus'];
isEntry?: ModuleItemType['isEntry'];
inputs: {
key: string;
value?: any;
valueType?: FlowNodeInputItemType['valueType'];
required?: boolean;
toolDescription?: string;
}[];
outputs: {
key: string;
required?: boolean;
defaultValue?: any;
answer?: boolean;
response?: boolean;
value?: any;
valueType?: FlowNodeOutputItemType['valueType'];
targets: {
moduleId: string;
key: string;
}[];
}[];
};
export type DispatchNodeResponseType = {
// common
moduleLogo?: string;
runningTime?: number;
query?: string;
textOutput?: string;
// bill
tokens?: number;
model?: string;
contextTotalLen?: number;
totalPoints?: number;
// chat
temperature?: number;
maxToken?: number;
quoteList?: SearchDataResponseItemType[];
historyPreview?: {
obj: `${ChatRoleEnum}`;
value: string;
}[]; // completion context array. history will slice
// dataset search
similarity?: number;
limit?: number;
searchMode?: `${DatasetSearchModeEnum}`;
searchUsingReRank?: boolean;
extensionModel?: string;
extensionResult?: string;
extensionTokens?: number;
// cq
cqList?: ClassifyQuestionAgentItemType[];
cqResult?: string;
// content extract
extractDescription?: string;
extractResult?: Record<string, any>;
// http
params?: Record<string, any>;
body?: Record<string, any>;
headers?: Record<string, any>;
httpResult?: Record<string, any>;
// plugin output
pluginOutput?: Record<string, any>;
pluginDetail?: ChatHistoryItemResType[];
// tf switch
tfSwitchResult?: boolean;
// tool
toolCallTokens?: number;
toolDetail?: ChatHistoryItemResType[];
};
export type DispatchNodeResultType<T> = {
[DispatchNodeResponseKeyEnum.nodeResponse]?: DispatchNodeResponseType; // The node response detail
[DispatchNodeResponseKeyEnum.nodeDispatchUsages]?: ChatNodeUsageType[]; //
[DispatchNodeResponseKeyEnum.childrenResponses]?: DispatchNodeResultType[];
[DispatchNodeResponseKeyEnum.toolResponses]?: ToolRunResponseItemType;
[DispatchNodeResponseKeyEnum.assistantResponses]?: ChatItemValueItemType[];
} & T;

View File

@@ -0,0 +1,31 @@
import { ChatCompletionRequestMessageRoleEnum } from '../../ai/constants';
export const textAdaptGptResponse = ({
text,
model = '',
finish_reason = null,
extraData = {}
}: {
model?: string;
text: string | null;
finish_reason?: null | 'stop';
extraData?: Object;
}) => {
return JSON.stringify({
...extraData,
id: '',
object: '',
created: 0,
model,
choices: [
{
delta:
text === null
? {}
: { role: ChatCompletionRequestMessageRoleEnum.Assistant, content: text },
index: 0,
finish_reason
}
]
});
};

View File

@@ -0,0 +1,115 @@
import { UserGuideModule } from './system/userGuide';
import { UserInputModule } from './system/userInput';
import { AiChatModule } from './system/aiChat';
import { DatasetSearchModule } from './system/datasetSearch';
import { DatasetConcatModule } from './system/datasetConcat';
import { AssignedAnswerModule } from './system/assignedAnswer';
import { ClassifyQuestionModule } from './system/classifyQuestion';
import { ContextExtractModule } from './system/contextExtract';
import { HttpModule468 } from './system/http468';
import { HttpModule } from './system/abandon/http';
import { ToolModule } from './system/tools';
import { RunAppModule } from './system/runApp';
import { PluginInputModule } from './system/pluginInput';
import { PluginOutputModule } from './system/pluginOutput';
import { RunPluginModule } from './system/runPlugin';
import { AiQueryExtension } from './system/queryExtension';
import type { FlowModuleTemplateType, moduleTemplateListType } from '../../module/type.d';
import { ModuleTemplateTypeEnum } from '../../module/constants';
/* app flow module templates */
export const appSystemModuleTemplates: FlowModuleTemplateType[] = [
UserGuideModule,
UserInputModule,
AiChatModule,
AssignedAnswerModule,
DatasetSearchModule,
DatasetConcatModule,
RunAppModule,
ToolModule,
ClassifyQuestionModule,
ContextExtractModule,
HttpModule468,
AiQueryExtension
];
/* plugin flow module templates */
export const pluginSystemModuleTemplates: FlowModuleTemplateType[] = [
PluginInputModule,
PluginOutputModule,
AiChatModule,
AssignedAnswerModule,
DatasetSearchModule,
DatasetConcatModule,
RunAppModule,
ToolModule,
ClassifyQuestionModule,
ContextExtractModule,
HttpModule468,
AiQueryExtension
];
/* all module */
export const moduleTemplatesFlat: FlowModuleTemplateType[] = [
UserGuideModule,
UserInputModule,
AiChatModule,
DatasetSearchModule,
DatasetConcatModule,
AssignedAnswerModule,
ClassifyQuestionModule,
ContextExtractModule,
HttpModule468,
HttpModule,
ToolModule,
AiChatModule,
RunAppModule,
PluginInputModule,
PluginOutputModule,
RunPluginModule,
AiQueryExtension
];
export const moduleTemplatesList: moduleTemplateListType = [
{
type: ModuleTemplateTypeEnum.userGuide,
label: 'core.module.template.Guide module',
list: []
},
{
type: ModuleTemplateTypeEnum.systemInput,
label: 'core.module.template.System input module',
list: []
},
{
type: ModuleTemplateTypeEnum.textAnswer,
label: 'core.module.template.Response module',
list: []
},
{
type: ModuleTemplateTypeEnum.functionCall,
label: 'core.module.template.Function module',
list: []
},
{
type: ModuleTemplateTypeEnum.tools,
label: 'core.module.template.Tool module',
list: []
},
{
type: ModuleTemplateTypeEnum.externalCall,
label: 'core.module.template.External module',
list: []
},
{
type: ModuleTemplateTypeEnum.personalPlugin,
label: 'core.module.template.My plugin module',
list: []
},
{
type: ModuleTemplateTypeEnum.other,
label: '其他',
list: []
}
];

View File

@@ -2,6 +2,7 @@ import type { FlowNodeInputItemType } from '../node/type.d';
import { DYNAMIC_INPUT_KEY, ModuleInputKeyEnum } from '../constants';
import { FlowNodeInputTypeEnum } from '../node/constant';
import { ModuleIOValueTypeEnum } from '../constants';
import { chatNodeSystemPromptTip } from './tip';
export const Input_Template_Switch: FlowNodeInputItemType = {
key: ModuleInputKeyEnum.switch,
@@ -58,6 +59,28 @@ export const Input_Template_DynamicInput: FlowNodeInputItemType = {
hideInApp: true
};
export const Input_Template_AiModel: FlowNodeInputItemType = {
key: ModuleInputKeyEnum.aiModel,
type: FlowNodeInputTypeEnum.selectLLMModel,
label: 'core.module.input.label.aiModel',
required: true,
valueType: ModuleIOValueTypeEnum.string,
showTargetInApp: false,
showTargetInPlugin: false
};
export const Input_Template_System_Prompt: FlowNodeInputItemType = {
key: ModuleInputKeyEnum.aiSystemPrompt,
type: FlowNodeInputTypeEnum.textarea,
max: 3000,
valueType: ModuleIOValueTypeEnum.string,
label: 'core.ai.Prompt',
description: chatNodeSystemPromptTip,
placeholder: chatNodeSystemPromptTip,
showTargetInApp: true,
showTargetInPlugin: true
};
export const Input_Template_Dataset_Quote: FlowNodeInputItemType = {
key: ModuleInputKeyEnum.aiChatDatasetQuote,
type: FlowNodeInputTypeEnum.target,

View File

@@ -11,9 +11,11 @@ import {
ModuleTemplateTypeEnum
} from '../../constants';
import {
Input_Template_AiModel,
Input_Template_Dataset_Quote,
Input_Template_History,
Input_Template_Switch,
Input_Template_System_Prompt,
Input_Template_UserChatInput
} from '../input';
import { chatNodeSystemPromptTip } from '../tip';
@@ -24,20 +26,13 @@ export const AiChatModule: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.textAnswer,
flowType: FlowNodeTypeEnum.chatNode,
avatar: '/imgs/module/AI.png',
name: 'core.module.template.Ai chat',
intro: 'core.module.template.Ai chat intro',
name: 'AI 对话',
intro: 'AI 大模型对话',
showStatus: true,
// isTool: true,
inputs: [
Input_Template_Switch,
{
key: ModuleInputKeyEnum.aiModel,
type: FlowNodeInputTypeEnum.selectLLMModel,
label: 'core.module.input.label.aiModel',
required: true,
valueType: ModuleIOValueTypeEnum.string,
showTargetInApp: false,
showTargetInPlugin: false
},
Input_Template_AiModel,
// --- settings modal
{
key: ModuleInputKeyEnum.aiChatTemperature,
@@ -98,18 +93,13 @@ export const AiChatModule: FlowModuleTemplateType = {
},
// settings modal ---
{
key: ModuleInputKeyEnum.aiSystemPrompt,
type: FlowNodeInputTypeEnum.textarea,
...Input_Template_System_Prompt,
label: 'core.ai.Prompt',
max: 300,
valueType: ModuleIOValueTypeEnum.string,
description: chatNodeSystemPromptTip,
placeholder: chatNodeSystemPromptTip,
showTargetInApp: true,
showTargetInPlugin: true
placeholder: chatNodeSystemPromptTip
},
Input_Template_History,
Input_Template_UserChatInput,
{ ...Input_Template_UserChatInput, toolDescription: '用户问题' },
Input_Template_Dataset_Quote
],
outputs: [

View File

@@ -9,8 +9,9 @@ export const AssignedAnswerModule: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.textAnswer,
flowType: FlowNodeTypeEnum.answerNode,
avatar: '/imgs/module/reply.png',
name: 'core.module.template.Assigned reply',
intro: 'core.module.template.Assigned reply intro',
name: '指定回复',
intro:
'该模块可以直接回复一段指定的内容。常用于引导、提示。非字符串内容传入时,会转成字符串进行输出。',
inputs: [
Input_Template_Switch,
{

View File

@@ -6,40 +6,34 @@ import {
import { FlowModuleTemplateType } from '../../type.d';
import { ModuleIOValueTypeEnum, ModuleInputKeyEnum, ModuleTemplateTypeEnum } from '../../constants';
import {
Input_Template_AiModel,
Input_Template_History,
Input_Template_Switch,
Input_Template_UserChatInput
} from '../input';
import { Output_Template_UserChatInput } from '../output';
import { Input_Template_System_Prompt } from '../input';
import { LLMModelTypeEnum } from '../../../ai/constants';
export const ClassifyQuestionModule: FlowModuleTemplateType = {
id: FlowNodeTypeEnum.classifyQuestion,
templateType: ModuleTemplateTypeEnum.functionCall,
flowType: FlowNodeTypeEnum.classifyQuestion,
avatar: '/imgs/module/cq.png',
name: 'core.module.template.Classify question',
intro: `core.module.template.Classify question intro`,
name: '问题分类',
intro: `根据用户的历史记录和当前问题判断该次提问的类型。可以添加多组问题类型,下面是一个模板例子:\n类型1: 打招呼\n类型2: 关于商品“使用”问题\n类型3: 关于商品“购买”问题\n类型4: 其他问题`,
showStatus: true,
inputs: [
Input_Template_Switch,
{
key: ModuleInputKeyEnum.aiModel,
type: FlowNodeInputTypeEnum.selectLLMModel,
valueType: ModuleIOValueTypeEnum.string,
label: 'core.module.input.label.Classify model',
required: true,
showTargetInApp: false,
showTargetInPlugin: false
...Input_Template_AiModel,
llmModelType: LLMModelTypeEnum.classify
},
{
key: ModuleInputKeyEnum.aiSystemPrompt,
type: FlowNodeInputTypeEnum.textarea,
valueType: ModuleIOValueTypeEnum.string,
...Input_Template_System_Prompt,
label: 'core.module.input.label.Background',
description: 'core.module.input.description.Background',
placeholder: 'core.module.input.placeholder.Classify background',
showTargetInApp: true,
showTargetInPlugin: true
placeholder: 'core.module.input.placeholder.Classify background'
},
Input_Template_History,
Input_Template_UserChatInput,

View File

@@ -10,26 +10,23 @@ import {
ModuleOutputKeyEnum,
ModuleTemplateTypeEnum
} from '../../constants';
import { Input_Template_History, Input_Template_Switch } from '../input';
import { Input_Template_AiModel, Input_Template_History, Input_Template_Switch } from '../input';
import { LLMModelTypeEnum } from '../../../ai/constants';
export const ContextExtractModule: FlowModuleTemplateType = {
id: FlowNodeTypeEnum.contentExtract,
templateType: ModuleTemplateTypeEnum.functionCall,
flowType: FlowNodeTypeEnum.contentExtract,
avatar: '/imgs/module/extract.png',
name: 'core.module.template.Extract field',
intro: 'core.module.template.Extract field intro',
name: '文本内容提取',
intro: '可从文本中提取指定的数据例如sql语句、搜索关键词、代码等',
showStatus: true,
isTool: true,
inputs: [
Input_Template_Switch,
{
key: ModuleInputKeyEnum.aiModel,
type: FlowNodeInputTypeEnum.selectLLMModel,
valueType: ModuleIOValueTypeEnum.string,
label: 'core.module.input.label.LLM',
required: true,
showTargetInApp: false,
showTargetInPlugin: false
...Input_Template_AiModel,
llmModelType: LLMModelTypeEnum.extractFields
},
{
key: ModuleInputKeyEnum.description,
@@ -52,7 +49,8 @@ export const ContextExtractModule: FlowModuleTemplateType = {
required: true,
valueType: ModuleIOValueTypeEnum.string,
showTargetInApp: true,
showTargetInPlugin: true
showTargetInPlugin: true,
toolDescription: '需要检索的内容'
},
{
key: ModuleInputKeyEnum.extractKeys,

View File

@@ -26,7 +26,7 @@ export const DatasetConcatModule: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.tools,
avatar: '/imgs/module/concat.svg',
name: '知识库搜索引用合并',
intro: 'core.module.template.Dataset search result concat intro',
intro: '可以将多个知识库搜索结果进行合并输出。使用 RRF 的合并方式进行最终排序输出。',
showStatus: false,
inputs: [
Input_Template_Switch,

View File

@@ -19,9 +19,10 @@ export const DatasetSearchModule: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.functionCall,
flowType: FlowNodeTypeEnum.datasetSearchNode,
avatar: '/imgs/module/db.png',
name: 'core.module.template.Dataset search',
intro: 'core.module.template.Dataset search intro',
name: '知识库搜索',
intro: '调用知识库搜索能力,查找“有可能”与问题相关的内容',
showStatus: true,
isTool: true,
inputs: [
Input_Template_Switch,
{
@@ -97,7 +98,10 @@ export const DatasetSearchModule: FlowModuleTemplateType = {
showTargetInPlugin: false,
value: ''
},
Input_Template_UserChatInput
{
...Input_Template_UserChatInput,
toolDescription: '需要检索的内容'
}
],
outputs: [
Output_Template_UserChatInput,

View File

@@ -5,9 +5,9 @@ import {
} from '../../node/constant';
import { FlowModuleTemplateType } from '../../type';
import {
DYNAMIC_INPUT_KEY,
ModuleIOValueTypeEnum,
ModuleInputKeyEnum,
ModuleOutputKeyEnum,
ModuleTemplateTypeEnum
} from '../../constants';
import {
@@ -22,9 +22,10 @@ export const HttpModule468: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.externalCall,
flowType: FlowNodeTypeEnum.httpRequest468,
avatar: '/imgs/module/http.png',
name: 'core.module.template.Http request',
intro: 'core.module.template.Http request intro',
name: 'HTTP 请求',
intro: '可以发出一个 HTTP 请求,实现更为复杂的操作(联网搜索、数据库查询等)',
showStatus: true,
isTool: true,
inputs: [
Input_Template_Switch,
{
@@ -86,7 +87,6 @@ export const HttpModule468: FlowModuleTemplateType = {
editField: {
key: true,
description: true,
required: true,
dataType: true
},
defaultEditField: {
@@ -94,19 +94,27 @@ export const HttpModule468: FlowModuleTemplateType = {
key: '',
description: '',
inputType: FlowNodeInputTypeEnum.target,
valueType: ModuleIOValueTypeEnum.string,
required: true
valueType: ModuleIOValueTypeEnum.string
}
}
],
outputs: [
Output_Template_Finish,
{
key: ModuleOutputKeyEnum.httpRawResponse,
label: '原始响应',
description: 'HTTP请求的原始响应。只能接受字符串或JSON类型响应数据。',
valueType: ModuleIOValueTypeEnum.any,
type: FlowNodeOutputTypeEnum.source,
targets: []
},
{
...Output_Template_AddOutput,
editField: {
key: true,
description: true,
dataType: true
dataType: true,
defaultValue: true
},
defaultEditField: {
label: '',

View File

@@ -13,28 +13,26 @@ import {
import {
Input_Template_History,
Input_Template_Switch,
Input_Template_UserChatInput
Input_Template_UserChatInput,
Input_Template_AiModel
} from '../input';
import { Output_Template_UserChatInput } from '../output';
import { LLMModelTypeEnum } from '../../../ai/constants';
export const AiQueryExtension: FlowModuleTemplateType = {
id: FlowNodeTypeEnum.chatNode,
templateType: ModuleTemplateTypeEnum.other,
flowType: FlowNodeTypeEnum.queryExtension,
avatar: '/imgs/module/cfr.svg',
name: 'core.module.template.Query extension',
intro: 'core.module.template.Query extension intro',
name: '问题优化',
intro:
'使用问题优化功能,可以提高知识库连续对话时搜索的精度。使用该功能后,会先利用 AI 根据上下文构建一个或多个新的检索词,这些检索词更利于进行知识库搜索。该模块已内置在知识库搜索模块中,如果您仅进行一次知识库搜索,可直接使用知识库内置的补全功能。',
showStatus: true,
inputs: [
Input_Template_Switch,
{
key: ModuleInputKeyEnum.aiModel,
type: FlowNodeInputTypeEnum.selectLLMModel,
label: 'core.module.input.label.aiModel',
required: true,
valueType: ModuleIOValueTypeEnum.string,
showTargetInApp: false,
showTargetInPlugin: false
...Input_Template_AiModel,
llmModelType: LLMModelTypeEnum.queryExtension
},
{
key: ModuleInputKeyEnum.aiSystemPrompt,

View File

@@ -22,8 +22,8 @@ export const RunAppModule: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.externalCall,
flowType: FlowNodeTypeEnum.runApp,
avatar: '/imgs/module/app.png',
name: 'core.module.template.Running app',
intro: 'core.module.template.Running app intro',
name: '应用调用',
intro: '可以选择一个其他应用进行调用',
showStatus: true,
inputs: [
Input_Template_Switch,
@@ -52,7 +52,7 @@ export const RunAppModule: FlowModuleTemplateType = {
},
{
key: ModuleOutputKeyEnum.answerText,
label: 'AI回复',
label: '回复的文本',
description: '将在应用完全结束后触发',
valueType: ModuleIOValueTypeEnum.string,
type: FlowNodeOutputTypeEnum.source,

View File

@@ -9,6 +9,7 @@ export const RunPluginModule: FlowModuleTemplateType = {
intro: '',
name: '',
showStatus: false,
isTool: true,
inputs: [], // [{key:'pluginId'},...]
outputs: []
};

View File

@@ -0,0 +1,52 @@
import { FlowNodeOutputTypeEnum, FlowNodeTypeEnum } from '../../node/constant';
import { FlowModuleTemplateType } from '../../type.d';
import {
ModuleIOValueTypeEnum,
ModuleOutputKeyEnum,
ModuleTemplateTypeEnum
} from '../../constants';
import {
Input_Template_AiModel,
Input_Template_History,
Input_Template_Switch,
Input_Template_System_Prompt,
Input_Template_UserChatInput
} from '../input';
import { chatNodeSystemPromptTip } from '../tip';
import { Output_Template_Finish, Output_Template_UserChatInput } from '../output';
import { LLMModelTypeEnum } from '../../../ai/constants';
export const ToolModule: FlowModuleTemplateType = {
id: FlowNodeTypeEnum.tools,
flowType: FlowNodeTypeEnum.tools,
templateType: ModuleTemplateTypeEnum.functionCall,
avatar: '/imgs/module/tool.svg',
name: '工具调用(实验)',
intro: '通过AI模型自动选择一个或多个工具进行调用。工具可以是其他功能块或插件。',
showStatus: true,
inputs: [
Input_Template_Switch,
{
...Input_Template_AiModel,
llmModelType: LLMModelTypeEnum.toolCall
},
{
...Input_Template_System_Prompt,
label: 'core.ai.Prompt',
description: chatNodeSystemPromptTip,
placeholder: chatNodeSystemPromptTip
},
Input_Template_History,
Input_Template_UserChatInput
],
outputs: [
Output_Template_UserChatInput,
{
key: ModuleOutputKeyEnum.selectedTools,
valueType: ModuleIOValueTypeEnum.tools,
type: FlowNodeOutputTypeEnum.hidden,
targets: []
},
Output_Template_Finish
]
};

View File

@@ -8,7 +8,7 @@ export const UserGuideModule: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.userGuide,
flowType: FlowNodeTypeEnum.userGuide,
avatar: '/imgs/module/userGuide.png',
name: 'core.module.template.User guide',
name: '全局配置',
intro: userGuideTip,
inputs: [
{

View File

@@ -16,8 +16,8 @@ export const UserInputModule: FlowModuleTemplateType = {
templateType: ModuleTemplateTypeEnum.systemInput,
flowType: FlowNodeTypeEnum.questionInput,
avatar: '/imgs/module/userChatInput.svg',
name: 'core.module.template.Chat entrance',
intro: 'core.module.template.Chat entrance intro',
name: '对话入口',
intro: '当用户发送一个内容后,流程将会从这个模块开始执行。',
inputs: [
{
key: ModuleInputKeyEnum.userChatInput,

View File

@@ -5,10 +5,16 @@ import {
ModuleTemplateTypeEnum,
VariableInputEnum
} from './constants';
import { DispatchNodeResponseKeyEnum } from './runtime/constants';
import { FlowNodeInputItemType, FlowNodeOutputItemType } from './node/type';
import { UserModelSchema } from 'support/user/type';
import { moduleDispatchResType } from '..//chat/type';
import { ChatModuleUsageType } from '../../support/wallet/bill/type';
import {
ChatItemValueItemType,
ToolRunResponseItemType,
UserChatItemValueItemType
} from '../chat/type';
import { ChatNodeUsageType } from '../../support/wallet/bill/type';
import { RunningModuleItemType } from './runtime/type';
export type FlowModuleTemplateType = {
id: string; // module id, unique
@@ -17,6 +23,7 @@ export type FlowModuleTemplateType = {
avatar?: string;
name: string;
intro: string; // template list intro
isTool?: boolean; // can be connected by tool
showStatus?: boolean; // chatting response step status
inputs: FlowNodeInputItemType[];
outputs: FlowNodeOutputItemType[];
@@ -44,6 +51,9 @@ export type ModuleItemType = {
showStatus?: boolean;
inputs: FlowNodeInputItemType[];
outputs: FlowNodeOutputItemType[];
// runTime field
isEntry?: boolean;
};
/* --------------- function type -------------------- */
@@ -85,30 +95,6 @@ export type ContextExtractAgentItemType = {
};
/* -------------- running module -------------- */
export type RunningModuleItemType = {
name: ModuleItemType['name'];
moduleId: ModuleItemType['moduleId'];
flowType: ModuleItemType['flowType'];
showStatus?: ModuleItemType['showStatus'];
} & {
inputs: {
key: string;
value?: any;
valueType?: `${ModuleIOValueTypeEnum}`;
}[];
outputs: {
key: string;
answer?: boolean;
response?: boolean;
value?: any;
valueType?: `${ModuleIOValueTypeEnum}`;
targets: {
moduleId: string;
key: string;
}[];
}[];
};
export type ChatDispatchProps = {
res: NextApiResponse;
mode: 'test' | 'chat';
@@ -120,15 +106,13 @@ export type ChatDispatchProps = {
responseChatItemId?: string;
histories: ChatItemType[];
variables: Record<string, any>;
inputFiles?: UserChatItemValueItemType['file'][];
stream: boolean;
detail: boolean; // response detail
};
export type ModuleDispatchProps<T> = ChatDispatchProps & {
module: RunningModuleItemType;
runtimeModules: RunningModuleItemType[];
params: T;
};
export type ModuleDispatchResponse<T> = T & {
[ModuleOutputKeyEnum.responseData]?: moduleDispatchResType;
[ModuleOutputKeyEnum.moduleDispatchBills]?: ChatModuleUsageType[];
};

View File

@@ -10,6 +10,7 @@ import { AppTTSConfigType, ModuleItemType, VariableItemType } from './type';
import { Input_Template_Switch } from './template/input';
import { EditorVariablePickerType } from '../../../web/components/common/Textarea/PromptEditor/type';
/* module */
export const getGuideModule = (modules: ModuleItemType[]) =>
modules.find((item) => item.flowType === FlowNodeTypeEnum.userGuide);
@@ -57,13 +58,13 @@ export const getModuleInputUiField = (input: FlowNodeInputItemType) => {
return {};
};
export function plugin2ModuleIO(
export const plugin2ModuleIO = (
pluginId: string,
modules: ModuleItemType[]
): {
inputs: FlowNodeInputItemType[];
outputs: FlowNodeOutputItemType[];
} {
} => {
const pluginInput = modules.find((module) => module.flowType === FlowNodeTypeEnum.pluginInput);
const pluginOutput = modules.find((module) => module.flowType === FlowNodeTypeEnum.pluginOutput);
@@ -99,7 +100,7 @@ export function plugin2ModuleIO(
}))
: []
};
}
};
export const formatEditorVariablePickerIcon = (
variables: { key: string; label: string; type?: `${VariableInputEnum}` }[]

View File

@@ -6,7 +6,7 @@
"dayjs": "^1.11.7",
"encoding": "^0.1.13",
"js-tiktoken": "^1.0.7",
"openai": "4.23.0",
"openai": "4.28.0",
"nanoid": "^4.0.1",
"timezones-list": "^3.0.2"
},

View File

@@ -1,4 +1,4 @@
import type { HistoryItemType, ChatSiteItemType } from '../../core/chat/type.d';
import type { HistoryItemType } from '../../core/chat/type.d';
import { OutLinkSchema } from './type.d';
export type AuthOutLinkInitProps = {

View File

@@ -22,7 +22,7 @@ export type BillSchemaType = {
username: string;
};
export type ChatModuleUsageType = {
export type ChatNodeUsageType = {
tokens?: number;
totalPoints: number;
moduleName: string;