mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 11:43:56 +00:00
4.8.21 feature (#3742)
* model config * feat: normalization embedding * adapt unstrea reasoning response * remove select app * perf: dataset search code * fix: multiple audio video show * perf: query extension output * perf: link check * perf: faq doc * fix: ts * feat: support reasoning text output * feat: workflow support reasoning output
This commit is contained in:
@@ -9,17 +9,31 @@ images: []
|
||||
|
||||
## 一、错误排查方式
|
||||
|
||||
遇到问题先按下面方式排查。
|
||||
可以先找找[Issue](https://github.com/labring/FastGPT/issues),或新提 Issue,私有部署错误,务必提供详细的操作步骤、日志、截图,否则很难排查。
|
||||
|
||||
### 获取后端错误
|
||||
|
||||
1. `docker ps -a` 查看所有容器运行状态,检查是否全部 running,如有异常,尝试`docker logs 容器名`查看对应日志。
|
||||
2. 容器都运行正常的,`docker logs 容器名` 查看报错日志
|
||||
3. 带有`requestId`的,都是 OneAPI 提示错误,大部分都是因为模型接口报错。
|
||||
4. 无法解决时,可以找找[Issue](https://github.com/labring/FastGPT/issues),或新提 Issue,私有部署错误,务必提供详细的日志,否则很难排查。
|
||||
|
||||
### 前端错误
|
||||
|
||||
前端报错时,页面会出现崩溃,并提示检查控制台日志。可以打开浏览器控制台,并查看`console`中的 log 日志。还可以点击对应 log 的超链接,会提示到具体错误文件,可以把这些详细错误信息提供,方便排查。
|
||||
|
||||
### OneAPI 错误
|
||||
|
||||
带有`requestId`的,都是 OneAPI 提示错误,大部分都是因为模型接口报错。可以参考 [OneAPI 常见错误](/docs/development/faq/#三常见的-oneapi-错误)
|
||||
|
||||
## 二、通用问题
|
||||
|
||||
### 前端页面崩溃
|
||||
|
||||
1. 90% 情况是模型配置不正确:确保每类模型都至少有一个启用;检查模型中一些`对象`参数是否异常(数组和对象),如果为空,可以尝试给个空数组或空对象。
|
||||
2. 少部分是由于浏览器兼容问题,由于项目中包含一些高阶语法,可能低版本浏览器不兼容,可以将具体操作步骤和控制台中错误信息提供 issue。
|
||||
3. 关闭浏览器翻译功能,如果浏览器开启了翻译,可能会导致页面崩溃。
|
||||
|
||||
### 通过sealos部署的话,是否没有本地部署的一些限制?
|
||||
|
||||

|
||||
这是索引模型的长度限制,通过任何方式部署都一样的,但不同索引模型的配置不一样,可以在后台修改参数。
|
||||
|
||||
|
@@ -11,11 +11,16 @@ weight: 804
|
||||
|
||||
## 完整更新内容
|
||||
|
||||
1.
|
||||
1. 新增 - 弃用/已删除的插件提示。
|
||||
2. 新增 - LLM 模型支持 top_p, response_format, json_schema 参数。
|
||||
3. 新增 - Doubao1.5 模型预设。
|
||||
4. 新增 - 向量模型支持归一化配置,以便适配未归一化的向量模型,例如 Doubao 的 embedding 模型。
|
||||
5. 优化 - 模型未配置时错误提示。
|
||||
6. 修复 - 简易模式,切换到其他非视觉模型时候,会强制关闭图片识别。
|
||||
7. 修复 - o1,o3 模型,在测试时候字段映射未生效导致报错。
|
||||
8. 修复 - 公众号对话空指针异常。
|
||||
5. 新增 - AI 对话节点,支持输出思考过程结果,可用于其他节点引用。
|
||||
6. 优化 - 模型未配置时错误提示。
|
||||
7. 优化 - 适配非 Stream 模式思考输出。
|
||||
8. 优化 - 增加 TTS voice 未配置时的空指针保护。
|
||||
9. 优化 - Markdown 链接解析分割规则,改成严格匹配模式,牺牲兼容多种情况,减少误解析。
|
||||
10. 修复 - 简易模式,切换到其他非视觉模型时候,会强制关闭图片识别。
|
||||
11. 修复 - o1,o3 模型,在测试时候字段映射未生效导致报错。
|
||||
12. 修复 - 公众号对话空指针异常。
|
||||
13. 修复 - 多个音频/视频文件展示异常。
|
@@ -7,7 +7,7 @@ toc: true
|
||||
weight: 234
|
||||
---
|
||||
|
||||
知识库搜索具体参数说明,以及内部逻辑请移步:[FastGPT知识库搜索方案](/docs/course/data_search/)
|
||||
知识库搜索具体参数说明,以及内部逻辑请移步:[FastGPT知识库搜索方案](/docs/guide/knowledge_base/rag/)
|
||||
|
||||
## 特点
|
||||
|
||||
@@ -27,7 +27,7 @@ weight: 234
|
||||
|
||||
### 输入 - 搜索参数
|
||||
|
||||
[点击查看参数介绍](/docs/course/data_search/#搜索参数)
|
||||
[点击查看参数介绍](/docs/guide/knowledge_base/dataset_engine/#搜索参数)
|
||||
|
||||
### 输出 - 引用内容
|
||||
|
||||
|
@@ -33,8 +33,10 @@ export enum WorkflowIOValueTypeEnum {
|
||||
dynamic = 'dynamic',
|
||||
|
||||
// plugin special type
|
||||
selectApp = 'selectApp',
|
||||
selectDataset = 'selectDataset'
|
||||
selectDataset = 'selectDataset',
|
||||
|
||||
// abandon
|
||||
selectApp = 'selectApp'
|
||||
}
|
||||
|
||||
export const toolValueTypeList = [
|
||||
@@ -158,6 +160,10 @@ export enum NodeInputKeyEnum {
|
||||
datasetSearchExtensionBg = 'datasetSearchExtensionBg',
|
||||
collectionFilterMatch = 'collectionFilterMatch',
|
||||
authTmbId = 'authTmbId',
|
||||
datasetDeepSearch = 'datasetDeepSearch',
|
||||
datasetDeepSearchModel = 'datasetDeepSearchModel',
|
||||
datasetDeepSearchMaxTimes = 'datasetDeepSearchMaxTimes',
|
||||
datasetDeepSearchBg = 'datasetDeepSearchBg',
|
||||
|
||||
// concat dataset
|
||||
datasetQuoteList = 'system_datasetQuoteList',
|
||||
|
@@ -140,7 +140,14 @@ export enum FlowNodeTypeEnum {
|
||||
}
|
||||
|
||||
// node IO value type
|
||||
export const FlowValueTypeMap = {
|
||||
export const FlowValueTypeMap: Record<
|
||||
WorkflowIOValueTypeEnum,
|
||||
{
|
||||
label: string;
|
||||
value: WorkflowIOValueTypeEnum;
|
||||
abandon?: boolean;
|
||||
}
|
||||
> = {
|
||||
[WorkflowIOValueTypeEnum.string]: {
|
||||
label: 'String',
|
||||
value: WorkflowIOValueTypeEnum.string
|
||||
@@ -189,10 +196,6 @@ export const FlowValueTypeMap = {
|
||||
label: i18nT('common:core.workflow.Dataset quote'),
|
||||
value: WorkflowIOValueTypeEnum.datasetQuote
|
||||
},
|
||||
[WorkflowIOValueTypeEnum.selectApp]: {
|
||||
label: i18nT('common:plugin.App'),
|
||||
value: WorkflowIOValueTypeEnum.selectApp
|
||||
},
|
||||
[WorkflowIOValueTypeEnum.selectDataset]: {
|
||||
label: i18nT('common:core.chat.Select dataset'),
|
||||
value: WorkflowIOValueTypeEnum.selectDataset
|
||||
@@ -200,6 +203,11 @@ export const FlowValueTypeMap = {
|
||||
[WorkflowIOValueTypeEnum.dynamic]: {
|
||||
label: i18nT('common:core.workflow.dynamic_input'),
|
||||
value: WorkflowIOValueTypeEnum.dynamic
|
||||
},
|
||||
[WorkflowIOValueTypeEnum.selectApp]: {
|
||||
label: 'selectApp',
|
||||
value: WorkflowIOValueTypeEnum.selectApp,
|
||||
abandon: true
|
||||
}
|
||||
};
|
||||
|
||||
@@ -219,3 +227,6 @@ export const datasetQuoteValueDesc = `{
|
||||
q: string;
|
||||
a: string
|
||||
}[]`;
|
||||
export const datasetSelectValueDesc = `{
|
||||
datasetId: string;
|
||||
}[]`;
|
||||
|
20
packages/global/core/workflow/runtime/type.d.ts
vendored
20
packages/global/core/workflow/runtime/type.d.ts
vendored
@@ -123,6 +123,7 @@ export type DispatchNodeResponseType = {
|
||||
temperature?: number;
|
||||
maxToken?: number;
|
||||
quoteList?: SearchDataResponseItemType[];
|
||||
reasoningText?: string;
|
||||
historyPreview?: {
|
||||
obj: `${ChatRoleEnum}`;
|
||||
value: string;
|
||||
@@ -133,9 +134,17 @@ export type DispatchNodeResponseType = {
|
||||
limit?: number;
|
||||
searchMode?: `${DatasetSearchModeEnum}`;
|
||||
searchUsingReRank?: boolean;
|
||||
extensionModel?: string;
|
||||
extensionResult?: string;
|
||||
extensionTokens?: number;
|
||||
queryExtensionResult?: {
|
||||
model: string;
|
||||
inputTokens: number;
|
||||
outputTokens: number;
|
||||
query: string;
|
||||
};
|
||||
deepSearchResult?: {
|
||||
model: string;
|
||||
inputTokens: number;
|
||||
outputTokens: number;
|
||||
};
|
||||
|
||||
// dataset concat
|
||||
concatLength?: number;
|
||||
@@ -198,6 +207,11 @@ export type DispatchNodeResponseType = {
|
||||
|
||||
// tool params
|
||||
toolParamsResult?: Record<string, any>;
|
||||
|
||||
// abandon
|
||||
extensionModel?: string;
|
||||
extensionResult?: string;
|
||||
extensionTokens?: number;
|
||||
};
|
||||
|
||||
export type DispatchNodeResultType<T = {}> = {
|
||||
|
@@ -151,6 +151,20 @@ export const AiChatModule: FlowNodeTemplateType = {
|
||||
description: i18nT('common:core.module.output.description.Ai response content'),
|
||||
valueType: WorkflowIOValueTypeEnum.string,
|
||||
type: FlowNodeOutputTypeEnum.static
|
||||
},
|
||||
{
|
||||
id: NodeOutputKeyEnum.reasoningText,
|
||||
key: NodeOutputKeyEnum.reasoningText,
|
||||
required: false,
|
||||
label: i18nT('workflow:reasoning_text'),
|
||||
valueType: WorkflowIOValueTypeEnum.string,
|
||||
type: FlowNodeOutputTypeEnum.static,
|
||||
invalid: true,
|
||||
invalidCondition: ({ inputs, llmModelList }) => {
|
||||
const model = inputs.find((item) => item.key === NodeInputKeyEnum.aiModel)?.value;
|
||||
const modelItem = llmModelList.find((item) => item.model === model);
|
||||
return modelItem?.reasoning !== true;
|
||||
}
|
||||
}
|
||||
]
|
||||
};
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import {
|
||||
datasetQuoteValueDesc,
|
||||
datasetSelectValueDesc,
|
||||
FlowNodeInputTypeEnum,
|
||||
FlowNodeOutputTypeEnum,
|
||||
FlowNodeTypeEnum
|
||||
@@ -38,7 +39,8 @@ export const DatasetSearchModule: FlowNodeTemplateType = {
|
||||
label: i18nT('common:core.module.input.label.Select dataset'),
|
||||
value: [],
|
||||
valueType: WorkflowIOValueTypeEnum.selectDataset,
|
||||
required: true
|
||||
required: true,
|
||||
valueDesc: datasetSelectValueDesc
|
||||
},
|
||||
{
|
||||
key: NodeInputKeyEnum.datasetSimilarity,
|
||||
|
7
packages/global/core/workflow/type/io.d.ts
vendored
7
packages/global/core/workflow/type/io.d.ts
vendored
@@ -1,3 +1,4 @@
|
||||
import { LLMModelItemType } from '../../ai/model.d';
|
||||
import { LLMModelTypeEnum } from '../../ai/constants';
|
||||
import { WorkflowIOValueTypeEnum, NodeInputKeyEnum, NodeOutputKeyEnum } from '../constants';
|
||||
import { FlowNodeInputTypeEnum, FlowNodeOutputTypeEnum } from '../node/constant';
|
||||
@@ -77,6 +78,12 @@ export type FlowNodeOutputItemType = {
|
||||
defaultValue?: any;
|
||||
required?: boolean;
|
||||
|
||||
invalid?: boolean;
|
||||
invalidCondition?: (e: {
|
||||
inputs: FlowNodeInputItemType[];
|
||||
llmModelList: LLMModelItemType[];
|
||||
}) => boolean;
|
||||
|
||||
// component params
|
||||
customFieldConfig?: CustomFieldConfigType;
|
||||
};
|
||||
|
@@ -1,277 +0,0 @@
|
||||
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
|
||||
import { ChatItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { DatasetSearchModeEnum } from '@fastgpt/global/core/dataset/constants';
|
||||
import { getLLMModel } from '../../ai/model';
|
||||
import { filterGPTMessageByMaxContext } from '../../chat/utils';
|
||||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||||
import { createChatCompletion } from '../../ai/config';
|
||||
import { llmCompletionsBodyFormat } from '../../ai/utils';
|
||||
import { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type';
|
||||
import { SearchDataResponseItemType } from '@fastgpt/global/core/dataset/type';
|
||||
import { searchDatasetData } from './controller';
|
||||
|
||||
type SearchDatasetDataProps = {
|
||||
queries: string[];
|
||||
histories: ChatItemType[];
|
||||
teamId: string;
|
||||
model: string;
|
||||
similarity?: number; // min distance
|
||||
limit: number; // max Token limit
|
||||
datasetIds: string[];
|
||||
searchMode?: `${DatasetSearchModeEnum}`;
|
||||
usingReRank?: boolean;
|
||||
reRankQuery: string;
|
||||
|
||||
/*
|
||||
{
|
||||
tags: {
|
||||
$and: ["str1","str2"],
|
||||
$or: ["str1","str2",null] null means no tags
|
||||
},
|
||||
createTime: {
|
||||
$gte: 'xx',
|
||||
$lte: 'xxx'
|
||||
}
|
||||
}
|
||||
*/
|
||||
collectionFilterMatch?: string;
|
||||
};
|
||||
|
||||
const analyzeQuery = async ({ query, histories }: { query: string; histories: ChatItemType[] }) => {
|
||||
const modelData = getLLMModel('gpt-4o-mini');
|
||||
|
||||
const systemFewShot = `
|
||||
## 知识背景
|
||||
FastGPT 是低代码AI应用构建平台,支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
|
||||
|
||||
## 任务目标
|
||||
基于用户历史对话和知识背景,生成多维度检索方案,确保覆盖核心语义及潜在关联维度。
|
||||
|
||||
## 工作流程
|
||||
1. 问题解构阶段
|
||||
[意图识别] 提取用户问题的核心实体和关系:
|
||||
- 显性需求:直接提及的关键词
|
||||
- 隐性需求:可能涉及的关联概念
|
||||
[示例] 若问题为"推荐手机",需考虑价格、品牌、使用场景等维度
|
||||
|
||||
2. 完整性校验阶段
|
||||
[完整性评估] 检查是否缺失核心实体和关系:
|
||||
- 主语完整
|
||||
- 多实体关系准确
|
||||
[维度扩展] 检查是否需要补充:
|
||||
□ 时间范围 □ 地理限定 □ 比较维度
|
||||
□ 专业术语 □ 同义词替换 □ 场景参数
|
||||
|
||||
3. 检索生成阶段
|
||||
[组合策略] 生成包含以下要素的查询序列:
|
||||
① 基础查询(核心关键词)
|
||||
② 扩展查询(核心+同义词)
|
||||
③ 场景查询(核心+场景限定词)
|
||||
④ 逆向查询(相关技术/对比对象)
|
||||
|
||||
## 输出规范
|
||||
格式要求:
|
||||
1. 每个查询为完整陈述句
|
||||
2. 包含至少1个核心词+1个扩展维度
|
||||
3. 按查询范围从宽到窄排序
|
||||
|
||||
禁止项:
|
||||
- 使用问句形式
|
||||
- 包含解决方案描述
|
||||
- 超出话题范围的假设
|
||||
|
||||
## 执行示例
|
||||
用户问题:"如何优化数据检索速度"
|
||||
|
||||
查询内容:
|
||||
1. FastGPT 数据检索速度优化的常用方法
|
||||
2. FastGPT 大数据量下的语义检索性能提升方案
|
||||
3. FastGPT API 响应时间的优化指标
|
||||
|
||||
## 任务开始
|
||||
`.trim();
|
||||
const filterHistories = await filterGPTMessageByMaxContext({
|
||||
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
|
||||
maxContext: modelData.maxContext - 1000
|
||||
});
|
||||
|
||||
const messages = [
|
||||
{
|
||||
role: 'system',
|
||||
content: systemFewShot
|
||||
},
|
||||
...filterHistories,
|
||||
{
|
||||
role: 'user',
|
||||
content: query
|
||||
}
|
||||
] as any;
|
||||
|
||||
const { response: result } = await createChatCompletion({
|
||||
body: llmCompletionsBodyFormat(
|
||||
{
|
||||
stream: false,
|
||||
model: modelData.model,
|
||||
temperature: 0.1,
|
||||
messages
|
||||
},
|
||||
modelData
|
||||
)
|
||||
});
|
||||
let answer = result.choices?.[0]?.message?.content || '';
|
||||
|
||||
// Extract queries from the answer by line number
|
||||
const queries = answer
|
||||
.split('\n')
|
||||
.map((line) => {
|
||||
const match = line.match(/^\d+\.\s*(.+)$/);
|
||||
return match ? match[1].trim() : null;
|
||||
})
|
||||
.filter(Boolean) as string[];
|
||||
|
||||
if (queries.length === 0) {
|
||||
return [answer];
|
||||
}
|
||||
|
||||
return queries;
|
||||
};
|
||||
const checkQuery = async ({
|
||||
queries,
|
||||
histories,
|
||||
searchResult
|
||||
}: {
|
||||
queries: string[];
|
||||
histories: ChatItemType[];
|
||||
searchResult: SearchDataResponseItemType[];
|
||||
}) => {
|
||||
const modelData = getLLMModel('gpt-4o-mini');
|
||||
|
||||
const systemFewShot = `
|
||||
## 知识背景
|
||||
FastGPT 是低代码AI应用构建平台,支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
|
||||
|
||||
## 查询结果
|
||||
${searchResult.map((item) => item.q + item.a).join('---\n---')}
|
||||
|
||||
## 任务目标
|
||||
检查"检索结果"是否覆盖用户的问题,如果无法覆盖用户问题,则再次生成检索方案。
|
||||
|
||||
## 工作流程
|
||||
1. 检查检索结果是否覆盖用户的问题
|
||||
2. 如果检索结果覆盖用户问题,则直接输出:"Done"
|
||||
3. 如果无法覆盖用户问题,则结合用户问题和检索结果,生成进一步的检索方案,进行深度检索
|
||||
|
||||
## 输出规范
|
||||
|
||||
1. 每个查询均为完整的查询语句
|
||||
2. 通过序号来表示多个检索内容
|
||||
|
||||
## 输出示例1
|
||||
Done
|
||||
|
||||
## 输出示例2
|
||||
1. 环界云计算的办公地址
|
||||
2. 环界云计算的注册地址在哪里
|
||||
|
||||
## 任务开始
|
||||
`.trim();
|
||||
const filterHistories = await filterGPTMessageByMaxContext({
|
||||
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
|
||||
maxContext: modelData.maxContext - 1000
|
||||
});
|
||||
|
||||
const messages = [
|
||||
{
|
||||
role: 'system',
|
||||
content: systemFewShot
|
||||
},
|
||||
...filterHistories,
|
||||
{
|
||||
role: 'user',
|
||||
content: queries.join('\n')
|
||||
}
|
||||
] as any;
|
||||
console.log(messages);
|
||||
const { response: result } = await createChatCompletion({
|
||||
body: llmCompletionsBodyFormat(
|
||||
{
|
||||
stream: false,
|
||||
model: modelData.model,
|
||||
temperature: 0.1,
|
||||
messages
|
||||
},
|
||||
modelData
|
||||
)
|
||||
});
|
||||
let answer = result.choices?.[0]?.message?.content || '';
|
||||
console.log(answer);
|
||||
if (answer.includes('Done')) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const nextQueries = answer
|
||||
.split('\n')
|
||||
.map((line) => {
|
||||
const match = line.match(/^\d+\.\s*(.+)$/);
|
||||
return match ? match[1].trim() : null;
|
||||
})
|
||||
.filter(Boolean) as string[];
|
||||
|
||||
return nextQueries;
|
||||
};
|
||||
export const agentSearchDatasetData = async ({
|
||||
searchRes = [],
|
||||
tokens = 0,
|
||||
...props
|
||||
}: SearchDatasetDataProps & {
|
||||
searchRes?: SearchDataResponseItemType[];
|
||||
tokens?: number;
|
||||
}) => {
|
||||
const query = props.queries[0];
|
||||
|
||||
const searchResultList: SearchDataResponseItemType[] = [];
|
||||
let searchQueries: string[] = [];
|
||||
|
||||
// 1. agent 分析问题
|
||||
searchQueries = await analyzeQuery({ query, histories: props.histories });
|
||||
|
||||
// 2. 检索内容 + 检查
|
||||
let retryTimes = 3;
|
||||
while (true) {
|
||||
retryTimes--;
|
||||
if (retryTimes < 0) break;
|
||||
|
||||
console.log(searchQueries, '--');
|
||||
const { searchRes: searchRes2, tokens: tokens2 } = await searchDatasetData({
|
||||
...props,
|
||||
queries: searchQueries
|
||||
});
|
||||
// console.log(searchRes2.map((item) => item.q));
|
||||
// deduplicate and merge search results
|
||||
const uniqueResults = searchRes2.filter((item) => {
|
||||
return !searchResultList.some((existingItem) => existingItem.id === item.id);
|
||||
});
|
||||
searchResultList.push(...uniqueResults);
|
||||
if (uniqueResults.length === 0) break;
|
||||
|
||||
const checkResult = await checkQuery({
|
||||
queries: searchQueries,
|
||||
histories: props.histories,
|
||||
searchResult: searchRes2
|
||||
});
|
||||
|
||||
if (checkResult.length > 0) {
|
||||
searchQueries = checkResult;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
console.log(searchResultList.length);
|
||||
return {
|
||||
searchRes: searchResultList,
|
||||
tokens: 0,
|
||||
usingSimilarityFilter: false,
|
||||
usingReRank: false
|
||||
};
|
||||
};
|
@@ -5,7 +5,7 @@ import {
|
||||
} from '@fastgpt/global/core/dataset/constants';
|
||||
import { recallFromVectorStore } from '../../../common/vectorStore/controller';
|
||||
import { getVectorsByText } from '../../ai/embedding';
|
||||
import { getEmbeddingModel, getDefaultRerankModel } from '../../ai/model';
|
||||
import { getEmbeddingModel, getDefaultRerankModel, getLLMModel } from '../../ai/model';
|
||||
import { MongoDatasetData } from '../data/schema';
|
||||
import {
|
||||
DatasetDataTextSchemaType,
|
||||
@@ -24,19 +24,23 @@ import { MongoDatasetCollectionTags } from '../tag/schema';
|
||||
import { readFromSecondary } from '../../../common/mongo/utils';
|
||||
import { MongoDatasetDataText } from '../data/dataTextSchema';
|
||||
import { ChatItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { POST } from '../../../common/api/plusRequest';
|
||||
import { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import { datasetSearchQueryExtension } from './utils';
|
||||
|
||||
type SearchDatasetDataProps = {
|
||||
histories?: ChatItemType[];
|
||||
export type SearchDatasetDataProps = {
|
||||
histories: ChatItemType[];
|
||||
teamId: string;
|
||||
model: string;
|
||||
similarity?: number; // min distance
|
||||
limit: number; // max Token limit
|
||||
datasetIds: string[];
|
||||
searchMode?: `${DatasetSearchModeEnum}`;
|
||||
usingReRank?: boolean;
|
||||
reRankQuery: string;
|
||||
queries: string[];
|
||||
|
||||
[NodeInputKeyEnum.datasetSimilarity]?: number; // min distance
|
||||
[NodeInputKeyEnum.datasetMaxTokens]: number; // max Token limit
|
||||
[NodeInputKeyEnum.datasetSearchMode]?: `${DatasetSearchModeEnum}`;
|
||||
[NodeInputKeyEnum.datasetSearchUsingReRank]?: boolean;
|
||||
|
||||
/*
|
||||
{
|
||||
tags: {
|
||||
@@ -52,7 +56,96 @@ type SearchDatasetDataProps = {
|
||||
collectionFilterMatch?: string;
|
||||
};
|
||||
|
||||
export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
export type SearchDatasetDataResponse = {
|
||||
searchRes: SearchDataResponseItemType[];
|
||||
tokens: number;
|
||||
searchMode: `${DatasetSearchModeEnum}`;
|
||||
limit: number;
|
||||
similarity: number;
|
||||
usingReRank: boolean;
|
||||
usingSimilarityFilter: boolean;
|
||||
|
||||
queryExtensionResult?: {
|
||||
model: string;
|
||||
inputTokens: number;
|
||||
outputTokens: number;
|
||||
query: string;
|
||||
};
|
||||
deepSearchResult?: { model: string; inputTokens: number; outputTokens: number };
|
||||
};
|
||||
|
||||
export const datasetDataReRank = async ({
|
||||
data,
|
||||
query
|
||||
}: {
|
||||
data: SearchDataResponseItemType[];
|
||||
query: string;
|
||||
}): Promise<SearchDataResponseItemType[]> => {
|
||||
const results = await reRankRecall({
|
||||
query,
|
||||
documents: data.map((item) => ({
|
||||
id: item.id,
|
||||
text: `${item.q}\n${item.a}`
|
||||
}))
|
||||
});
|
||||
|
||||
if (results.length === 0) {
|
||||
return Promise.reject('Rerank error');
|
||||
}
|
||||
|
||||
// add new score to data
|
||||
const mergeResult = results
|
||||
.map((item, index) => {
|
||||
const target = data.find((dataItem) => dataItem.id === item.id);
|
||||
if (!target) return null;
|
||||
const score = item.score || 0;
|
||||
|
||||
return {
|
||||
...target,
|
||||
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
|
||||
};
|
||||
})
|
||||
.filter(Boolean) as SearchDataResponseItemType[];
|
||||
|
||||
return mergeResult;
|
||||
};
|
||||
export const filterDatasetDataByMaxTokens = async (
|
||||
data: SearchDataResponseItemType[],
|
||||
maxTokens: number
|
||||
) => {
|
||||
const filterMaxTokensResult = await (async () => {
|
||||
// Count tokens
|
||||
const tokensScoreFilter = await Promise.all(
|
||||
data.map(async (item) => ({
|
||||
...item,
|
||||
tokens: await countPromptTokens(item.q + item.a)
|
||||
}))
|
||||
);
|
||||
|
||||
const results: SearchDataResponseItemType[] = [];
|
||||
let totalTokens = 0;
|
||||
|
||||
for await (const item of tokensScoreFilter) {
|
||||
totalTokens += item.tokens;
|
||||
|
||||
if (totalTokens > maxTokens + 500) {
|
||||
break;
|
||||
}
|
||||
results.push(item);
|
||||
if (totalTokens > maxTokens) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return results.length === 0 ? data.slice(0, 1) : results;
|
||||
})();
|
||||
|
||||
return filterMaxTokensResult;
|
||||
};
|
||||
|
||||
export async function searchDatasetData(
|
||||
props: SearchDatasetDataProps
|
||||
): Promise<SearchDatasetDataResponse> {
|
||||
let {
|
||||
teamId,
|
||||
reRankQuery,
|
||||
@@ -457,47 +550,6 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
tokenLen: 0
|
||||
};
|
||||
};
|
||||
const reRankSearchResult = async ({
|
||||
data,
|
||||
query
|
||||
}: {
|
||||
data: SearchDataResponseItemType[];
|
||||
query: string;
|
||||
}): Promise<SearchDataResponseItemType[]> => {
|
||||
try {
|
||||
const results = await reRankRecall({
|
||||
query,
|
||||
documents: data.map((item) => ({
|
||||
id: item.id,
|
||||
text: `${item.q}\n${item.a}`
|
||||
}))
|
||||
});
|
||||
|
||||
if (results.length === 0) {
|
||||
usingReRank = false;
|
||||
return [];
|
||||
}
|
||||
|
||||
// add new score to data
|
||||
const mergeResult = results
|
||||
.map((item, index) => {
|
||||
const target = data.find((dataItem) => dataItem.id === item.id);
|
||||
if (!target) return null;
|
||||
const score = item.score || 0;
|
||||
|
||||
return {
|
||||
...target,
|
||||
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
|
||||
};
|
||||
})
|
||||
.filter(Boolean) as SearchDataResponseItemType[];
|
||||
|
||||
return mergeResult;
|
||||
} catch (error) {
|
||||
usingReRank = false;
|
||||
return [];
|
||||
}
|
||||
};
|
||||
const multiQueryRecall = async ({
|
||||
embeddingLimit,
|
||||
fullTextLimit
|
||||
@@ -582,10 +634,15 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
set.add(str);
|
||||
return true;
|
||||
});
|
||||
return reRankSearchResult({
|
||||
try {
|
||||
return datasetDataReRank({
|
||||
query: reRankQuery,
|
||||
data: filterSameDataResults
|
||||
});
|
||||
} catch (error) {
|
||||
usingReRank = false;
|
||||
return [];
|
||||
}
|
||||
})();
|
||||
|
||||
// embedding recall and fullText recall rrf concat
|
||||
@@ -630,31 +687,7 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
})();
|
||||
|
||||
// token filter
|
||||
const filterMaxTokensResult = await (async () => {
|
||||
const tokensScoreFilter = await Promise.all(
|
||||
scoreFilter.map(async (item) => ({
|
||||
...item,
|
||||
tokens: await countPromptTokens(item.q + item.a)
|
||||
}))
|
||||
);
|
||||
|
||||
const results: SearchDataResponseItemType[] = [];
|
||||
let totalTokens = 0;
|
||||
|
||||
for await (const item of tokensScoreFilter) {
|
||||
totalTokens += item.tokens;
|
||||
|
||||
if (totalTokens > maxTokens + 500) {
|
||||
break;
|
||||
}
|
||||
results.push(item);
|
||||
if (totalTokens > maxTokens) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return results.length === 0 ? scoreFilter.slice(0, 1) : results;
|
||||
})();
|
||||
const filterMaxTokensResult = await filterDatasetDataByMaxTokens(scoreFilter, maxTokens);
|
||||
|
||||
return {
|
||||
searchRes: filterMaxTokensResult,
|
||||
@@ -666,3 +699,53 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
usingSimilarityFilter
|
||||
};
|
||||
}
|
||||
|
||||
export type DefaultSearchDatasetDataProps = SearchDatasetDataProps & {
|
||||
[NodeInputKeyEnum.datasetSearchUsingExtensionQuery]?: boolean;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionModel]?: string;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionBg]?: string;
|
||||
};
|
||||
export const defaultSearchDatasetData = async ({
|
||||
datasetSearchUsingExtensionQuery,
|
||||
datasetSearchExtensionModel,
|
||||
datasetSearchExtensionBg,
|
||||
...props
|
||||
}: DefaultSearchDatasetDataProps): Promise<SearchDatasetDataResponse> => {
|
||||
const query = props.queries[0];
|
||||
|
||||
const extensionModel = datasetSearchUsingExtensionQuery
|
||||
? getLLMModel(datasetSearchExtensionModel)
|
||||
: undefined;
|
||||
|
||||
const { concatQueries, rewriteQuery, aiExtensionResult } = await datasetSearchQueryExtension({
|
||||
query,
|
||||
extensionModel,
|
||||
extensionBg: datasetSearchExtensionBg
|
||||
});
|
||||
|
||||
const result = await searchDatasetData({
|
||||
...props,
|
||||
reRankQuery: rewriteQuery,
|
||||
queries: concatQueries
|
||||
});
|
||||
|
||||
return {
|
||||
...result,
|
||||
queryExtensionResult: aiExtensionResult
|
||||
? {
|
||||
model: aiExtensionResult.model,
|
||||
inputTokens: aiExtensionResult.inputTokens,
|
||||
outputTokens: aiExtensionResult.outputTokens,
|
||||
query: concatQueries.join('\n')
|
||||
}
|
||||
: undefined
|
||||
};
|
||||
};
|
||||
|
||||
export type DeepRagSearchProps = SearchDatasetDataProps & {
|
||||
[NodeInputKeyEnum.datasetDeepSearchModel]?: string;
|
||||
[NodeInputKeyEnum.datasetDeepSearchMaxTimes]?: number;
|
||||
[NodeInputKeyEnum.datasetDeepSearchBg]?: string;
|
||||
};
|
||||
export const deepRagSearch = (data: DeepRagSearchProps) =>
|
||||
POST<SearchDatasetDataResponse>('/core/dataset/deepRag', data);
|
||||
|
@@ -106,7 +106,6 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
}
|
||||
|
||||
aiChatVision = modelConstantsData.vision && aiChatVision;
|
||||
stream = stream && isResponseAnswerText;
|
||||
aiChatReasoning = !!aiChatReasoning && !!modelConstantsData.reasoning;
|
||||
|
||||
const chatHistories = getHistories(history, histories);
|
||||
@@ -202,6 +201,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
res,
|
||||
stream: response,
|
||||
aiChatReasoning,
|
||||
isResponseAnswerText,
|
||||
workflowStreamResponse
|
||||
});
|
||||
|
||||
@@ -212,20 +212,28 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
} else {
|
||||
const unStreamResponse = response as ChatCompletion;
|
||||
const answer = unStreamResponse.choices?.[0]?.message?.content || '';
|
||||
const reasoning = aiChatReasoning
|
||||
? // @ts-ignore
|
||||
unStreamResponse.choices?.[0]?.message?.reasoning_content || ''
|
||||
: '';
|
||||
if (stream) {
|
||||
// @ts-ignore
|
||||
const reasoning = unStreamResponse.choices?.[0]?.message?.reasoning_content || '';
|
||||
|
||||
// Some models do not support streaming
|
||||
if (stream) {
|
||||
if (isResponseAnswerText && answer) {
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
text: answer
|
||||
})
|
||||
});
|
||||
}
|
||||
if (aiChatReasoning && reasoning) {
|
||||
workflowStreamResponse?.({
|
||||
event: SseResponseEventEnum.fastAnswer,
|
||||
data: textAdaptGptResponse({
|
||||
text: answer,
|
||||
reasoning_content: reasoning
|
||||
})
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
answerText: answer,
|
||||
@@ -269,6 +277,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
|
||||
outputTokens: outputTokens,
|
||||
query: `${userChatInput}`,
|
||||
maxToken: max_tokens,
|
||||
reasoningText,
|
||||
historyPreview: getHistoryPreview(chatCompleteMessages, 10000, aiChatVision),
|
||||
contextTotalLen: completeMessages.length
|
||||
},
|
||||
@@ -476,12 +485,14 @@ async function streamResponse({
|
||||
res,
|
||||
stream,
|
||||
workflowStreamResponse,
|
||||
aiChatReasoning
|
||||
aiChatReasoning,
|
||||
isResponseAnswerText
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
stream: StreamChatType;
|
||||
workflowStreamResponse?: WorkflowResponseType;
|
||||
aiChatReasoning?: boolean;
|
||||
isResponseAnswerText?: boolean;
|
||||
}) {
|
||||
const write = responseWriteController({
|
||||
res,
|
||||
@@ -497,21 +508,28 @@ async function streamResponse({
|
||||
|
||||
const content = part.choices?.[0]?.delta?.content || '';
|
||||
answer += content;
|
||||
|
||||
const reasoningContent = aiChatReasoning
|
||||
? part.choices?.[0]?.delta?.reasoning_content || ''
|
||||
: '';
|
||||
reasoning += reasoningContent;
|
||||
|
||||
if (isResponseAnswerText && content) {
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
text: content,
|
||||
reasoning_content: reasoningContent
|
||||
text: content
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
const reasoningContent = part.choices?.[0]?.delta?.reasoning_content || '';
|
||||
reasoning += reasoningContent;
|
||||
if (aiChatReasoning && reasoningContent) {
|
||||
workflowStreamResponse?.({
|
||||
write,
|
||||
event: SseResponseEventEnum.answer,
|
||||
data: textAdaptGptResponse({
|
||||
reasoning_content: reasoningContent
|
||||
})
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return { answer, reasoning };
|
||||
}
|
||||
|
@@ -6,13 +6,11 @@ import { formatModelChars2Points } from '../../../../support/wallet/usage/utils'
|
||||
import type { SelectedDatasetType } from '@fastgpt/global/core/workflow/api.d';
|
||||
import type { SearchDataResponseItemType } from '@fastgpt/global/core/dataset/type';
|
||||
import type { ModuleDispatchProps } from '@fastgpt/global/core/workflow/runtime/type';
|
||||
import { getLLMModel, getEmbeddingModel } from '../../../ai/model';
|
||||
import { searchDatasetData } from '../../../dataset/search/controller';
|
||||
import { getEmbeddingModel } from '../../../ai/model';
|
||||
import { deepRagSearch, defaultSearchDatasetData } from '../../../dataset/search/controller';
|
||||
import { NodeInputKeyEnum, NodeOutputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import { DispatchNodeResponseKeyEnum } from '@fastgpt/global/core/workflow/runtime/constants';
|
||||
import { DatasetSearchModeEnum } from '@fastgpt/global/core/dataset/constants';
|
||||
import { getHistories } from '../utils';
|
||||
import { datasetSearchQueryExtension } from '../../../dataset/search/utils';
|
||||
import { ChatNodeUsageType } from '@fastgpt/global/support/wallet/bill/type';
|
||||
import { checkTeamReRankPermission } from '../../../../support/permission/teamLimit';
|
||||
import { MongoDataset } from '../../../dataset/schema';
|
||||
@@ -27,11 +25,17 @@ type DatasetSearchProps = ModuleDispatchProps<{
|
||||
[NodeInputKeyEnum.datasetSearchMode]: `${DatasetSearchModeEnum}`;
|
||||
[NodeInputKeyEnum.userChatInput]: string;
|
||||
[NodeInputKeyEnum.datasetSearchUsingReRank]: boolean;
|
||||
[NodeInputKeyEnum.collectionFilterMatch]: string;
|
||||
[NodeInputKeyEnum.authTmbId]: boolean;
|
||||
|
||||
[NodeInputKeyEnum.datasetSearchUsingExtensionQuery]: boolean;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionModel]: string;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionBg]: string;
|
||||
[NodeInputKeyEnum.collectionFilterMatch]: string;
|
||||
[NodeInputKeyEnum.authTmbId]: boolean;
|
||||
|
||||
[NodeInputKeyEnum.datasetDeepSearch]?: boolean;
|
||||
[NodeInputKeyEnum.datasetDeepSearchModel]?: string;
|
||||
[NodeInputKeyEnum.datasetDeepSearchMaxTimes]?: number;
|
||||
[NodeInputKeyEnum.datasetDeepSearchBg]?: string;
|
||||
}>;
|
||||
export type DatasetSearchResponse = DispatchNodeResultType<{
|
||||
[NodeOutputKeyEnum.datasetQuoteQA]: SearchDataResponseItemType[];
|
||||
@@ -52,12 +56,17 @@ export async function dispatchDatasetSearch(
|
||||
usingReRank,
|
||||
searchMode,
|
||||
userChatInput,
|
||||
authTmbId = false,
|
||||
collectionFilterMatch,
|
||||
|
||||
datasetSearchUsingExtensionQuery,
|
||||
datasetSearchExtensionModel,
|
||||
datasetSearchExtensionBg,
|
||||
collectionFilterMatch,
|
||||
authTmbId = false
|
||||
|
||||
datasetDeepSearch,
|
||||
datasetDeepSearchModel,
|
||||
datasetDeepSearchMaxTimes,
|
||||
datasetDeepSearchBg
|
||||
}
|
||||
} = props as DatasetSearchProps;
|
||||
|
||||
@@ -85,25 +94,12 @@ export async function dispatchDatasetSearch(
|
||||
return emptyResult;
|
||||
}
|
||||
|
||||
// query extension
|
||||
const extensionModel = datasetSearchUsingExtensionQuery
|
||||
? getLLMModel(datasetSearchExtensionModel)
|
||||
: undefined;
|
||||
|
||||
const [{ concatQueries, rewriteQuery, aiExtensionResult }, datasetIds] = await Promise.all([
|
||||
datasetSearchQueryExtension({
|
||||
query: userChatInput,
|
||||
extensionModel,
|
||||
extensionBg: datasetSearchExtensionBg,
|
||||
histories: getHistories(6, histories)
|
||||
}),
|
||||
authTmbId
|
||||
? filterDatasetsByTmbId({
|
||||
const datasetIds = authTmbId
|
||||
? await filterDatasetsByTmbId({
|
||||
datasetIds: datasets.map((item) => item.datasetId),
|
||||
tmbId
|
||||
})
|
||||
: Promise.resolve(datasets.map((item) => item.datasetId))
|
||||
]);
|
||||
: await Promise.resolve(datasets.map((item) => item.datasetId));
|
||||
|
||||
if (datasetIds.length === 0) {
|
||||
return emptyResult;
|
||||
@@ -116,15 +112,11 @@ export async function dispatchDatasetSearch(
|
||||
);
|
||||
|
||||
// start search
|
||||
const {
|
||||
searchRes,
|
||||
tokens,
|
||||
usingSimilarityFilter,
|
||||
usingReRank: searchUsingReRank
|
||||
} = await searchDatasetData({
|
||||
const searchData = {
|
||||
histories,
|
||||
teamId,
|
||||
reRankQuery: `${rewriteQuery}`,
|
||||
queries: concatQueries,
|
||||
reRankQuery: userChatInput,
|
||||
queries: [userChatInput],
|
||||
model: vectorModel.model,
|
||||
similarity,
|
||||
limit,
|
||||
@@ -132,59 +124,106 @@ export async function dispatchDatasetSearch(
|
||||
searchMode,
|
||||
usingReRank: usingReRank && (await checkTeamReRankPermission(teamId)),
|
||||
collectionFilterMatch
|
||||
};
|
||||
const {
|
||||
searchRes,
|
||||
tokens,
|
||||
usingSimilarityFilter,
|
||||
usingReRank: searchUsingReRank,
|
||||
queryExtensionResult,
|
||||
deepSearchResult
|
||||
} = datasetDeepSearch
|
||||
? await deepRagSearch({
|
||||
...searchData,
|
||||
datasetDeepSearchModel,
|
||||
datasetDeepSearchMaxTimes,
|
||||
datasetDeepSearchBg
|
||||
})
|
||||
: await defaultSearchDatasetData({
|
||||
...searchData,
|
||||
datasetSearchUsingExtensionQuery,
|
||||
datasetSearchExtensionModel,
|
||||
datasetSearchExtensionBg
|
||||
});
|
||||
|
||||
// count bill results
|
||||
const nodeDispatchUsages: ChatNodeUsageType[] = [];
|
||||
// vector
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
const { totalPoints: embeddingTotalPoints, modelName: embeddingModelName } =
|
||||
formatModelChars2Points({
|
||||
model: vectorModel.model,
|
||||
inputTokens: tokens,
|
||||
modelType: ModelTypeEnum.embedding
|
||||
});
|
||||
nodeDispatchUsages.push({
|
||||
totalPoints: embeddingTotalPoints,
|
||||
moduleName: node.name,
|
||||
model: embeddingModelName,
|
||||
inputTokens: tokens
|
||||
});
|
||||
// Query extension
|
||||
const { totalPoints: queryExtensionTotalPoints } = (() => {
|
||||
if (queryExtensionResult) {
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
model: queryExtensionResult.model,
|
||||
inputTokens: queryExtensionResult.inputTokens,
|
||||
outputTokens: queryExtensionResult.outputTokens,
|
||||
modelType: ModelTypeEnum.llm
|
||||
});
|
||||
nodeDispatchUsages.push({
|
||||
totalPoints,
|
||||
moduleName: i18nT('common:core.module.template.Query extension'),
|
||||
model: modelName,
|
||||
inputTokens: queryExtensionResult.inputTokens,
|
||||
outputTokens: queryExtensionResult.outputTokens
|
||||
});
|
||||
return {
|
||||
totalPoints
|
||||
};
|
||||
}
|
||||
return {
|
||||
totalPoints: 0
|
||||
};
|
||||
})();
|
||||
// Deep search
|
||||
const { totalPoints: deepSearchTotalPoints } = (() => {
|
||||
if (deepSearchResult) {
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
model: deepSearchResult.model,
|
||||
inputTokens: deepSearchResult.inputTokens,
|
||||
outputTokens: deepSearchResult.outputTokens,
|
||||
modelType: ModelTypeEnum.llm
|
||||
});
|
||||
nodeDispatchUsages.push({
|
||||
totalPoints,
|
||||
moduleName: i18nT('common:deep_rag_search'),
|
||||
model: modelName,
|
||||
inputTokens: deepSearchResult.inputTokens,
|
||||
outputTokens: deepSearchResult.outputTokens
|
||||
});
|
||||
return {
|
||||
totalPoints
|
||||
};
|
||||
}
|
||||
return {
|
||||
totalPoints: 0
|
||||
};
|
||||
})();
|
||||
const totalPoints = embeddingTotalPoints + queryExtensionTotalPoints + deepSearchTotalPoints;
|
||||
|
||||
const responseData: DispatchNodeResponseType & { totalPoints: number } = {
|
||||
totalPoints,
|
||||
query: concatQueries.join('\n'),
|
||||
model: modelName,
|
||||
query: userChatInput,
|
||||
model: vectorModel.model,
|
||||
inputTokens: tokens,
|
||||
similarity: usingSimilarityFilter ? similarity : undefined,
|
||||
limit,
|
||||
searchMode,
|
||||
searchUsingReRank: searchUsingReRank,
|
||||
quoteList: searchRes
|
||||
quoteList: searchRes,
|
||||
queryExtensionResult,
|
||||
deepSearchResult
|
||||
};
|
||||
const nodeDispatchUsages: ChatNodeUsageType[] = [
|
||||
{
|
||||
totalPoints,
|
||||
moduleName: node.name,
|
||||
model: modelName,
|
||||
inputTokens: tokens
|
||||
}
|
||||
];
|
||||
|
||||
if (aiExtensionResult) {
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
model: aiExtensionResult.model,
|
||||
inputTokens: aiExtensionResult.inputTokens,
|
||||
outputTokens: aiExtensionResult.outputTokens,
|
||||
modelType: ModelTypeEnum.llm
|
||||
});
|
||||
|
||||
responseData.totalPoints += totalPoints;
|
||||
responseData.inputTokens = aiExtensionResult.inputTokens;
|
||||
responseData.outputTokens = aiExtensionResult.outputTokens;
|
||||
responseData.extensionModel = modelName;
|
||||
responseData.extensionResult =
|
||||
aiExtensionResult.extensionQueries?.join('\n') ||
|
||||
JSON.stringify(aiExtensionResult.extensionQueries);
|
||||
|
||||
nodeDispatchUsages.push({
|
||||
totalPoints,
|
||||
moduleName: 'core.module.template.Query extension',
|
||||
model: modelName,
|
||||
inputTokens: aiExtensionResult.inputTokens,
|
||||
outputTokens: aiExtensionResult.outputTokens
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
quoteQA: searchRes,
|
||||
|
@@ -56,14 +56,15 @@ export const readPdfFile = async ({ buffer }: ReadRawTextByBuffer): Promise<Read
|
||||
}
|
||||
};
|
||||
|
||||
// @ts-ignore
|
||||
const loadingTask = pdfjs.getDocument(buffer.buffer);
|
||||
const doc = await loadingTask.promise;
|
||||
|
||||
// Avoid OOM.
|
||||
let result = '';
|
||||
const pageArr = Array.from({ length: doc.numPages }, (_, i) => i + 1);
|
||||
for await (const pageNo of pageArr) {
|
||||
result += await readPDFPage(doc, pageNo);
|
||||
for (let i = 0; i < pageArr.length; i++) {
|
||||
result += await readPDFPage(doc, i + 1);
|
||||
}
|
||||
|
||||
loadingTask.destroy();
|
||||
|
@@ -66,12 +66,6 @@ const NodeInputSelect = ({
|
||||
|
||||
title: t('common:core.workflow.inputType.dynamicTargetInput')
|
||||
},
|
||||
{
|
||||
type: FlowNodeInputTypeEnum.selectApp,
|
||||
icon: FlowNodeInputMap[FlowNodeInputTypeEnum.selectApp].icon,
|
||||
|
||||
title: t('common:core.workflow.inputType.Manual select')
|
||||
},
|
||||
{
|
||||
type: FlowNodeInputTypeEnum.selectLLMModel,
|
||||
icon: FlowNodeInputMap[FlowNodeInputTypeEnum.selectLLMModel].icon,
|
||||
|
@@ -37,7 +37,10 @@
|
||||
"not_query": "Missing query content",
|
||||
"not_select_file": "No file selected",
|
||||
"plugins_output": "Plugin Output",
|
||||
"query_extension_IO_tokens": "Problem Optimization Input/Output Tokens",
|
||||
"query_extension_result": "Problem optimization results",
|
||||
"question_tip": "From top to bottom, the response order of each module",
|
||||
"reasoning_text": "Thinking process",
|
||||
"response.child total points": "Sub-workflow point consumption",
|
||||
"response.dataset_concat_length": "Combined total",
|
||||
"response.node_inputs": "Node Inputs",
|
||||
|
@@ -876,6 +876,7 @@
|
||||
"dataset.dataset_name": "Dataset Name",
|
||||
"dataset.deleteFolderTips": "Confirm to Delete This Folder and All Its Contained Datasets? Data Cannot Be Recovered After Deletion, Please Confirm!",
|
||||
"dataset.test.noResult": "No Search Results",
|
||||
"deep_rag_search": "In-depth search",
|
||||
"delete_api": "Are you sure you want to delete this API key? \nAfter deletion, the key will become invalid immediately and the corresponding conversation log will not be deleted. Please confirm!",
|
||||
"error.Create failed": "Create failed",
|
||||
"error.code_error": "Verification code error",
|
||||
@@ -883,6 +884,7 @@
|
||||
"error.inheritPermissionError": "Inherit permission Error",
|
||||
"error.invalid_params": "Invalid parameter",
|
||||
"error.missingParams": "Insufficient parameters",
|
||||
"error.send_auth_code_too_frequently": "Please do not obtain verification code frequently",
|
||||
"error.too_many_request": "Too many request",
|
||||
"error.upload_file_error_filename": "{{name}} Upload Failed",
|
||||
"error.upload_image_error": "File upload failed",
|
||||
|
@@ -139,6 +139,7 @@
|
||||
"quote_role_system_tip": "Please note that the {{question}} variable is removed from the \"Quote Template Prompt Words\"",
|
||||
"quote_role_user_tip": "Please pay attention to adding the {{question}} variable in the \"Quote Template Prompt Word\"",
|
||||
"raw_response": "Raw Response",
|
||||
"reasoning_text": "Thinking text",
|
||||
"regex": "Regex",
|
||||
"reply_text": "Reply Text",
|
||||
"request_error": "Request Error",
|
||||
|
@@ -37,7 +37,10 @@
|
||||
"not_query": "缺少查询内容",
|
||||
"not_select_file": "未选择文件",
|
||||
"plugins_output": "插件输出",
|
||||
"query_extension_IO_tokens": "问题优化输入/输出 Tokens",
|
||||
"query_extension_result": "问题优化结果",
|
||||
"question_tip": "从上到下,为各个模块的响应顺序",
|
||||
"reasoning_text": "思考过程",
|
||||
"response.child total points": "子工作流积分消耗",
|
||||
"response.dataset_concat_length": "合并后总数",
|
||||
"response.node_inputs": "节点输入",
|
||||
|
@@ -879,6 +879,7 @@
|
||||
"dataset.dataset_name": "知识库名称",
|
||||
"dataset.deleteFolderTips": "确认删除该文件夹及其包含的所有知识库?删除后数据无法恢复,请确认!",
|
||||
"dataset.test.noResult": "搜索结果为空",
|
||||
"deep_rag_search": "深度搜索",
|
||||
"delete_api": "确认删除该API密钥?删除后该密钥立即失效,对应的对话日志不会删除,请确认!",
|
||||
"error.Create failed": "创建失败",
|
||||
"error.code_error": "验证码错误",
|
||||
@@ -886,6 +887,7 @@
|
||||
"error.inheritPermissionError": "权限继承错误",
|
||||
"error.invalid_params": "参数无效",
|
||||
"error.missingParams": "参数缺失",
|
||||
"error.send_auth_code_too_frequently": "请勿频繁获取验证码",
|
||||
"error.too_many_request": "请求太频繁了,请稍后重试",
|
||||
"error.upload_file_error_filename": "{{name}} 上传失败",
|
||||
"error.upload_image_error": "上传文件失败",
|
||||
|
@@ -139,6 +139,7 @@
|
||||
"quote_role_system_tip": "请注意从“引用模板提示词”中移除 {{question}} 变量",
|
||||
"quote_role_user_tip": "请注意在“引用模板提示词”中添加 {{question}} 变量",
|
||||
"raw_response": "原始响应",
|
||||
"reasoning_text": "思考过程",
|
||||
"regex": "正则",
|
||||
"reply_text": "回复的文本",
|
||||
"request_error": "请求错误",
|
||||
|
@@ -37,7 +37,9 @@
|
||||
"not_query": "缺少查詢內容",
|
||||
"not_select_file": "尚未選取檔案",
|
||||
"plugins_output": "外掛程式輸出",
|
||||
"query_extension_IO_tokens": "問題優化輸入/輸出 Tokens",
|
||||
"question_tip": "由上至下,各個模組的回應順序",
|
||||
"reasoning_text": "思考過程",
|
||||
"response.child total points": "子工作流程點數消耗",
|
||||
"response.dataset_concat_length": "合併總數",
|
||||
"response.node_inputs": "節點輸入",
|
||||
|
@@ -876,6 +876,7 @@
|
||||
"dataset.dataset_name": "知識庫名稱",
|
||||
"dataset.deleteFolderTips": "確認刪除此資料夾及其包含的所有知識庫?刪除後資料無法復原,請確認!",
|
||||
"dataset.test.noResult": "搜尋結果為空",
|
||||
"deep_rag_search": "深度搜索",
|
||||
"delete_api": "確認刪除此 API 金鑰?\n刪除後該金鑰將立即失效,對應的對話記錄不會被刪除,請確認!",
|
||||
"error.Create failed": "建立失敗",
|
||||
"error.code_error": "驗證碼錯誤",
|
||||
@@ -883,6 +884,7 @@
|
||||
"error.inheritPermissionError": "繼承權限錯誤",
|
||||
"error.invalid_params": "參數無效",
|
||||
"error.missingParams": "參數不足",
|
||||
"error.send_auth_code_too_frequently": "請勿頻繁獲取驗證碼",
|
||||
"error.too_many_request": "請求太頻繁了,請稍後重試",
|
||||
"error.upload_file_error_filename": "{{name}} 上傳失敗",
|
||||
"error.upload_image_error": "上傳文件失敗",
|
||||
|
@@ -139,6 +139,7 @@
|
||||
"quote_role_system_tip": "請注意從「引用範本提示詞」中移除 {{question}} 變數",
|
||||
"quote_role_user_tip": "請注意在「引用範本提示詞」中加入 {{question}} 變數",
|
||||
"raw_response": "原始回應",
|
||||
"reasoning_text": "思考過程",
|
||||
"regex": "正規表達式",
|
||||
"reply_text": "回覆文字",
|
||||
"request_error": "請求錯誤",
|
||||
|
@@ -1,9 +1,10 @@
|
||||
import React, { useEffect } from 'react';
|
||||
import React, { useEffect, useRef } from 'react';
|
||||
import { Box } from '@chakra-ui/react';
|
||||
import { useMarkdownWidth } from '../hooks';
|
||||
|
||||
const AudioBlock = ({ code: audioUrl }: { code: string }) => {
|
||||
const { width, Ref } = useMarkdownWidth();
|
||||
const audioRef = useRef<HTMLAudioElement>(null);
|
||||
|
||||
useEffect(() => {
|
||||
fetch(audioUrl?.trim(), {
|
||||
@@ -13,8 +14,7 @@ const AudioBlock = ({ code: audioUrl }: { code: string }) => {
|
||||
.then((response) => response.blob())
|
||||
.then((blob) => {
|
||||
const url = URL.createObjectURL(blob);
|
||||
const audio = document.getElementById('player');
|
||||
audio?.setAttribute('src', url);
|
||||
audioRef?.current?.setAttribute('src', url);
|
||||
})
|
||||
.catch((err) => {
|
||||
console.log(err);
|
||||
@@ -22,8 +22,8 @@ const AudioBlock = ({ code: audioUrl }: { code: string }) => {
|
||||
}, [audioUrl]);
|
||||
|
||||
return (
|
||||
<Box w={width} ref={Ref}>
|
||||
<audio id="player" controls style={{ width: '100%' }} />
|
||||
<Box w={width} ref={Ref} my={4}>
|
||||
<audio ref={audioRef} controls style={{ width: '100%' }} />
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
@@ -1,9 +1,10 @@
|
||||
import React, { useEffect } from 'react';
|
||||
import React, { useEffect, useRef } from 'react';
|
||||
import { Box } from '@chakra-ui/react';
|
||||
import { useMarkdownWidth } from '../hooks';
|
||||
|
||||
const VideoBlock = ({ code: videoUrl }: { code: string }) => {
|
||||
const { width, Ref } = useMarkdownWidth();
|
||||
const videoRef = useRef<HTMLVideoElement>(null);
|
||||
|
||||
useEffect(() => {
|
||||
fetch(videoUrl?.trim(), {
|
||||
@@ -13,8 +14,7 @@ const VideoBlock = ({ code: videoUrl }: { code: string }) => {
|
||||
.then((response) => response.blob())
|
||||
.then((blob) => {
|
||||
const url = URL.createObjectURL(blob);
|
||||
const video = document.getElementById('player');
|
||||
video?.setAttribute('src', url);
|
||||
videoRef?.current?.setAttribute('src', url);
|
||||
})
|
||||
.catch((err) => {
|
||||
console.log(err);
|
||||
@@ -22,8 +22,8 @@ const VideoBlock = ({ code: videoUrl }: { code: string }) => {
|
||||
}, [videoUrl]);
|
||||
|
||||
return (
|
||||
<Box w={width} ref={Ref}>
|
||||
<video id="player" controls />
|
||||
<Box w={width} ref={Ref} my={4} borderRadius={'md'} overflow={'hidden'}>
|
||||
<video ref={videoRef} controls />
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
@@ -58,10 +58,10 @@ const MarkdownRender = ({ source = '', showAnimation, isDisabled, forbidZhFormat
|
||||
// 保护 URL 格式:https://, http://, /api/xxx
|
||||
const urlPlaceholders: string[] = [];
|
||||
const textWithProtectedUrls = source.replace(
|
||||
/(https?:\/\/[^\s<]+[^<.,:;"')\]\s]|\/api\/[^\s]+)(?=\s|$)/g,
|
||||
/https?:\/\/(?:(?:[\w-]+\.)+[a-zA-Z]{2,6}|localhost)(?::\d{2,5})?(?:\/[\w\-./?%&=@]*)?/g,
|
||||
(match) => {
|
||||
urlPlaceholders.push(match);
|
||||
return `__URL_${urlPlaceholders.length - 1}__`;
|
||||
return `__URL_${urlPlaceholders.length - 1}__ `;
|
||||
}
|
||||
);
|
||||
|
||||
@@ -73,14 +73,14 @@ const MarkdownRender = ({ source = '', showAnimation, isDisabled, forbidZhFormat
|
||||
)
|
||||
// 处理引用标记
|
||||
.replace(/\n*(\[QUOTE SIGN\]\(.*\))/g, '$1')
|
||||
// 处理 [quote:id] 格式引用,将 [quote:675934a198f46329dfc6d05a] 转换为 [675934a198f46329dfc6d05a]()
|
||||
// 处理 [quote:id] 格式引用,将 [quote:675934a198f46329dfc6d05a] 转换为 [675934a198f46329dfc6d05a](QUOTE)
|
||||
.replace(/\[quote:?\s*([a-f0-9]{24})\](?!\()/gi, '[$1](QUOTE)')
|
||||
.replace(/\[([a-f0-9]{24})\](?!\()/g, '[$1](QUOTE)');
|
||||
|
||||
// 还原 URL
|
||||
const finalText = textWithSpaces.replace(
|
||||
/__URL_(\d+)__/g,
|
||||
(_, index) => urlPlaceholders[parseInt(index)]
|
||||
(_, index) => `${urlPlaceholders[parseInt(index)]}`
|
||||
);
|
||||
|
||||
return finalText;
|
||||
|
@@ -99,6 +99,7 @@ const SettingLLMModel = ({
|
||||
<AISettingModal
|
||||
onClose={onCloseAIChatSetting}
|
||||
onSuccess={(e) => {
|
||||
console.log(e);
|
||||
onChange(e);
|
||||
onCloseAIChatSetting();
|
||||
}}
|
||||
|
@@ -46,10 +46,11 @@ const TTSSelect = ({
|
||||
</HStack>
|
||||
),
|
||||
value: model.model,
|
||||
children: model.voices.map((voice) => ({
|
||||
children:
|
||||
model.voices?.map((voice) => ({
|
||||
label: voice.label,
|
||||
value: voice.value
|
||||
}))
|
||||
})) || []
|
||||
};
|
||||
})
|
||||
],
|
||||
|
@@ -226,7 +226,7 @@ const ChatBox = ({
|
||||
status,
|
||||
moduleName: name
|
||||
};
|
||||
} else if (event === SseResponseEventEnum.answer && reasoningText) {
|
||||
} else if (reasoningText) {
|
||||
if (lastValue.type === ChatItemValueTypeEnum.reasoning && lastValue.reasoning) {
|
||||
lastValue.reasoning.content += reasoningText;
|
||||
return {
|
||||
|
@@ -194,6 +194,7 @@ export const WholeResponseContent = ({
|
||||
label={t('common:core.chat.response.module maxToken')}
|
||||
value={activeModule?.maxToken}
|
||||
/>
|
||||
<Row label={t('chat:reasoning_text')} value={activeModule?.reasoningText} />
|
||||
<Row
|
||||
label={t('common:core.chat.response.module historyPreview')}
|
||||
rawDom={
|
||||
@@ -238,6 +239,22 @@ export const WholeResponseContent = ({
|
||||
label={t('common:core.chat.response.search using reRank')}
|
||||
value={`${activeModule?.searchUsingReRank}`}
|
||||
/>
|
||||
{activeModule.queryExtensionResult && (
|
||||
<>
|
||||
<Row
|
||||
label={t('common:core.chat.response.Extension model')}
|
||||
value={activeModule.queryExtensionResult.model}
|
||||
/>
|
||||
<Row
|
||||
label={t('chat:query_extension_IO_tokens')}
|
||||
value={`${activeModule.queryExtensionResult.inputTokens}/${activeModule.queryExtensionResult.outputTokens}`}
|
||||
/>
|
||||
<Row
|
||||
label={t('common:support.wallet.usage.Extension result')}
|
||||
value={activeModule.queryExtensionResult.query}
|
||||
/>
|
||||
</>
|
||||
)}
|
||||
<Row
|
||||
label={t('common:core.chat.response.Extension model')}
|
||||
value={activeModule?.extensionModel}
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import { getCaptchaPic } from '@/web/support/user/api';
|
||||
import { Button, Input, Image, ModalBody, ModalFooter, Skeleton } from '@chakra-ui/react';
|
||||
import { Button, Input, ModalBody, ModalFooter, Skeleton } from '@chakra-ui/react';
|
||||
import MyImage from '@fastgpt/web/components/common/Image/MyImage';
|
||||
import MyModal from '@fastgpt/web/components/common/MyModal';
|
||||
import { useRequest2 } from '@fastgpt/web/hooks/useRequest';
|
||||
@@ -16,7 +16,7 @@ const SendCodeAuthModal = ({
|
||||
onClose: () => void;
|
||||
|
||||
onSending: boolean;
|
||||
onSendCode: (params_0: { username: string; captcha: string }) => Promise<void>;
|
||||
onSendCode: (e: { username: string; captcha: string }) => Promise<void>;
|
||||
}) => {
|
||||
const { t } = useTranslation();
|
||||
|
||||
@@ -63,11 +63,16 @@ const SendCodeAuthModal = ({
|
||||
</Button>
|
||||
<Button
|
||||
isLoading={onSending}
|
||||
onClick={handleSubmit(({ code }) => {
|
||||
onClick={handleSubmit(
|
||||
({ code }) => {
|
||||
return onSendCode({ username, captcha: code }).then(() => {
|
||||
onClose();
|
||||
});
|
||||
})}
|
||||
},
|
||||
(err) => {
|
||||
console.log(err);
|
||||
}
|
||||
)}
|
||||
>
|
||||
{t('common:common.Confirm')}
|
||||
</Button>
|
||||
|
@@ -64,9 +64,15 @@ export type SearchTestProps = {
|
||||
[NodeInputKeyEnum.datasetMaxTokens]?: number;
|
||||
[NodeInputKeyEnum.datasetSearchMode]?: `${DatasetSearchModeEnum}`;
|
||||
[NodeInputKeyEnum.datasetSearchUsingReRank]?: boolean;
|
||||
|
||||
[NodeInputKeyEnum.datasetSearchUsingExtensionQuery]?: boolean;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionModel]?: string;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionBg]?: string;
|
||||
|
||||
[NodeInputKeyEnum.datasetDeepSearch]?: boolean;
|
||||
[NodeInputKeyEnum.datasetDeepSearchModel]?: string;
|
||||
[NodeInputKeyEnum.datasetDeepSearchMaxTimes]?: number;
|
||||
[NodeInputKeyEnum.datasetDeepSearchBg]?: string;
|
||||
};
|
||||
export type SearchTestResponse = {
|
||||
list: SearchDataResponseItemType[];
|
||||
|
@@ -23,7 +23,6 @@ import PromptEditor from '@fastgpt/web/components/common/Textarea/PromptEditor';
|
||||
import { formatEditorVariablePickerIcon } from '@fastgpt/global/core/workflow/utils';
|
||||
import SearchParamsTip from '@/components/core/dataset/SearchParamsTip';
|
||||
import SettingLLMModel from '@/components/core/ai/SettingLLMModel';
|
||||
import type { SettingAIDataType } from '@fastgpt/global/core/app/type.d';
|
||||
import { TTSTypeEnum } from '@/web/core/app/constants';
|
||||
import { workflowSystemVariables } from '@/web/core/app/utils';
|
||||
import { useContextSelector } from 'use-context-selector';
|
||||
@@ -164,12 +163,13 @@ const EditForm = ({
|
||||
aiChatResponseFormat: appForm.aiSettings.aiChatResponseFormat,
|
||||
aiChatJsonSchema: appForm.aiSettings.aiChatJsonSchema
|
||||
}}
|
||||
onChange={({ maxHistories = 6, aiChatReasoning = true, ...data }) => {
|
||||
onChange={({ maxHistories = 6, ...data }) => {
|
||||
setAppForm((state) => ({
|
||||
...state,
|
||||
aiSettings: {
|
||||
...state.aiSettings,
|
||||
...data
|
||||
...data,
|
||||
maxHistories
|
||||
}
|
||||
}));
|
||||
}}
|
||||
|
@@ -106,7 +106,9 @@ const InputTypeConfig = ({
|
||||
...listValue[index]
|
||||
}));
|
||||
|
||||
const valueTypeSelectList = Object.values(FlowValueTypeMap).map((item) => ({
|
||||
const valueTypeSelectList = Object.values(FlowValueTypeMap)
|
||||
.filter((item) => !item.abandon)
|
||||
.map((item) => ({
|
||||
label: t(item.label as any),
|
||||
value: item.value
|
||||
}));
|
||||
|
@@ -66,9 +66,6 @@ const NodePluginConfig = ({ data, selected }: NodeProps<FlowNodeItemType>) => {
|
||||
>
|
||||
<Container w={'360px'}>
|
||||
<Instruction {...componentsProps} />
|
||||
<Box pt={4}>
|
||||
<FileSelectConfig {...componentsProps} />
|
||||
</Box>
|
||||
</Container>
|
||||
</NodeCard>
|
||||
);
|
||||
|
@@ -93,7 +93,9 @@ export const useReference = ({
|
||||
),
|
||||
value: node.nodeId,
|
||||
children: filterWorkflowNodeOutputsByType(node.outputs, valueType)
|
||||
.filter((output) => output.id !== NodeOutputKeyEnum.addOutputParam)
|
||||
.filter(
|
||||
(output) => output.id !== NodeOutputKeyEnum.addOutputParam && output.invalid !== true
|
||||
)
|
||||
.map((output) => {
|
||||
return {
|
||||
label: t(output.label as any),
|
||||
|
@@ -13,7 +13,7 @@ const SelectAiModelRender = ({ item, inputs = [], nodeId }: RenderInputProps) =>
|
||||
(e: SettingAIDataType) => {
|
||||
for (const key in e) {
|
||||
const input = inputs.find((input) => input.key === key);
|
||||
input &&
|
||||
if (input) {
|
||||
onChangeNode({
|
||||
nodeId,
|
||||
type: 'updateInput',
|
||||
@@ -25,6 +25,7 @@ const SelectAiModelRender = ({ item, inputs = [], nodeId }: RenderInputProps) =>
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
},
|
||||
[inputs, nodeId, onChangeNode]
|
||||
);
|
||||
|
@@ -1,4 +1,4 @@
|
||||
import React, { useMemo, useState } from 'react';
|
||||
import React, { useEffect, useMemo, useState } from 'react';
|
||||
import type { FlowNodeOutputItemType } from '@fastgpt/global/core/workflow/type/io.d';
|
||||
import { Box, Button, Flex } from '@chakra-ui/react';
|
||||
import { FlowNodeOutputTypeEnum } from '@fastgpt/global/core/workflow/node/constant';
|
||||
@@ -14,6 +14,7 @@ import QuestionTip from '@fastgpt/web/components/common/MyTooltip/QuestionTip';
|
||||
import FormLabel from '@fastgpt/web/components/common/MyBox/FormLabel';
|
||||
import dynamic from 'next/dynamic';
|
||||
import { defaultOutput } from './FieldEditModal';
|
||||
import { useSystemStore } from '@/web/common/system/useSystemStore';
|
||||
|
||||
const FieldEditModal = dynamic(() => import('./FieldEditModal'));
|
||||
|
||||
@@ -25,6 +26,7 @@ const RenderOutput = ({
|
||||
flowOutputList: FlowNodeOutputItemType[];
|
||||
}) => {
|
||||
const { t } = useTranslation();
|
||||
const { llmModelList } = useSystemStore();
|
||||
const onChangeNode = useContextSelector(WorkflowContext, (v) => v.onChangeNode);
|
||||
|
||||
const outputString = useMemo(() => JSON.stringify(flowOutputList), [flowOutputList]);
|
||||
@@ -32,6 +34,32 @@ const RenderOutput = ({
|
||||
return JSON.parse(outputString) as FlowNodeOutputItemType[];
|
||||
}, [outputString]);
|
||||
|
||||
// Condition check
|
||||
const inputs = useContextSelector(WorkflowContext, (v) => {
|
||||
const node = v.nodeList.find((node) => node.nodeId === nodeId);
|
||||
return JSON.stringify(node?.inputs);
|
||||
});
|
||||
useEffect(() => {
|
||||
flowOutputList.forEach((output) => {
|
||||
if (!output.invalidCondition || !inputs) return;
|
||||
const parsedInputs = JSON.parse(inputs);
|
||||
|
||||
const invalid = output.invalidCondition({
|
||||
inputs: parsedInputs,
|
||||
llmModelList
|
||||
});
|
||||
onChangeNode({
|
||||
nodeId,
|
||||
type: 'replaceOutput',
|
||||
key: output.key,
|
||||
value: {
|
||||
...output,
|
||||
invalid
|
||||
}
|
||||
});
|
||||
});
|
||||
}, [copyOutputs, nodeId, inputs, llmModelList]);
|
||||
|
||||
const [editField, setEditField] = useState<FlowNodeOutputItemType>();
|
||||
|
||||
const RenderDynamicOutputs = useMemo(() => {
|
||||
@@ -129,12 +157,14 @@ const RenderOutput = ({
|
||||
return (
|
||||
<>
|
||||
{renderOutputs.map((output, i) => {
|
||||
return output.label ? (
|
||||
return output.label && output.invalid !== true ? (
|
||||
<FormLabel
|
||||
key={output.key}
|
||||
required={output.required}
|
||||
mb={i === renderOutputs.length - 1 ? 0 : 4}
|
||||
position={'relative'}
|
||||
_notLast={{
|
||||
mb: 4
|
||||
}}
|
||||
>
|
||||
<OutputLabel nodeId={nodeId} output={output} />
|
||||
</FormLabel>
|
||||
|
@@ -125,7 +125,12 @@ export const getEditorVariables = ({
|
||||
: sourceNodes
|
||||
.map((node) => {
|
||||
return node.outputs
|
||||
.filter((output) => !!output.label && output.id !== NodeOutputKeyEnum.addOutputParam)
|
||||
.filter(
|
||||
(output) =>
|
||||
!!output.label &&
|
||||
output.invalid !== true &&
|
||||
output.id !== NodeOutputKeyEnum.addOutputParam
|
||||
)
|
||||
.map((output) => {
|
||||
return {
|
||||
label: t((output.label as any) || ''),
|
||||
|
@@ -28,12 +28,15 @@ function Error() {
|
||||
return (
|
||||
<Box whiteSpace={'pre-wrap'}>
|
||||
{`出现未捕获的异常。
|
||||
1. 私有部署用户,90%由于配置文件不正确/模型未启用导致。请确保系统内每个系列模型至少有一个可用。
|
||||
1. 私有部署用户,90%是由于模型配置不正确/模型未启用导致。。
|
||||
2. 部分系统不兼容相关API。大部分是苹果的safari 浏览器导致,可以尝试更换 chrome。
|
||||
3. 请关闭浏览器翻译功能,部分翻译导致页面崩溃。
|
||||
|
||||
排除3后,打开控制台的 console 查看具体报错信息。
|
||||
如果提示 xxx undefined 的话,就是配置文件有错误,或者是缺少可用模型。
|
||||
如果提示 xxx undefined 的话,就是模型配置不正确,检查:
|
||||
1. 请确保系统内每个系列模型至少有一个可用,可以在【账号-模型提供商】中检查。
|
||||
2. 请确保至少有一个知识库文件处理模型(语言模型中有一个开关),否则知识库创建会报错。
|
||||
2. 检查模型中一些“对象”参数是否异常(数组和对象),如果为空,可以尝试给个空数组或空对象。
|
||||
`}
|
||||
</Box>
|
||||
);
|
||||
|
@@ -1,12 +1,12 @@
|
||||
import type { NextApiRequest } from 'next';
|
||||
import type { SearchTestProps } from '@/global/core/dataset/api.d';
|
||||
import type { SearchTestProps, SearchTestResponse } from '@/global/core/dataset/api.d';
|
||||
import { authDataset } from '@fastgpt/service/support/permission/dataset/auth';
|
||||
import { pushGenerateVectorUsage } from '@/service/support/wallet/usage/push';
|
||||
import { searchDatasetData } from '@fastgpt/service/core/dataset/search/controller';
|
||||
import {
|
||||
deepRagSearch,
|
||||
defaultSearchDatasetData
|
||||
} from '@fastgpt/service/core/dataset/search/controller';
|
||||
import { updateApiKeyUsage } from '@fastgpt/service/support/openapi/tools';
|
||||
import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants';
|
||||
import { getLLMModel } from '@fastgpt/service/core/ai/model';
|
||||
import { datasetSearchQueryExtension } from '@fastgpt/service/core/dataset/search/utils';
|
||||
import {
|
||||
checkTeamAIPoints,
|
||||
checkTeamReRankPermission
|
||||
@@ -15,9 +15,9 @@ import { NextAPI } from '@/service/middleware/entry';
|
||||
import { ReadPermissionVal } from '@fastgpt/global/support/permission/constant';
|
||||
import { CommonErrEnum } from '@fastgpt/global/common/error/code/common';
|
||||
import { useIPFrequencyLimit } from '@fastgpt/service/common/middle/reqFrequencyLimit';
|
||||
import { agentSearchDatasetData } from '@fastgpt/service/core/dataset/search/agent';
|
||||
import { ApiRequestProps } from '@fastgpt/service/type/next';
|
||||
|
||||
async function handler(req: NextApiRequest) {
|
||||
async function handler(req: ApiRequestProps<SearchTestProps>): Promise<SearchTestResponse> {
|
||||
const {
|
||||
datasetId,
|
||||
text,
|
||||
@@ -26,10 +26,15 @@ async function handler(req: NextApiRequest) {
|
||||
searchMode,
|
||||
usingReRank,
|
||||
|
||||
datasetSearchUsingExtensionQuery = true,
|
||||
datasetSearchUsingExtensionQuery = false,
|
||||
datasetSearchExtensionModel,
|
||||
datasetSearchExtensionBg = ''
|
||||
} = req.body as SearchTestProps;
|
||||
datasetSearchExtensionBg,
|
||||
|
||||
datasetDeepSearch = false,
|
||||
datasetDeepSearchModel,
|
||||
datasetDeepSearchMaxTimes,
|
||||
datasetDeepSearchBg
|
||||
} = req.body;
|
||||
|
||||
if (!datasetId || !text) {
|
||||
return Promise.reject(CommonErrEnum.missingParams);
|
||||
@@ -48,28 +53,30 @@ async function handler(req: NextApiRequest) {
|
||||
// auth balance
|
||||
await checkTeamAIPoints(teamId);
|
||||
|
||||
// query extension
|
||||
const extensionModel =
|
||||
datasetSearchUsingExtensionQuery && datasetSearchExtensionModel
|
||||
? getLLMModel(datasetSearchExtensionModel)
|
||||
: undefined;
|
||||
const { concatQueries, rewriteQuery, aiExtensionResult } = await datasetSearchQueryExtension({
|
||||
query: text,
|
||||
extensionModel,
|
||||
extensionBg: datasetSearchExtensionBg
|
||||
});
|
||||
|
||||
const { searchRes, tokens, ...result } = await searchDatasetData({
|
||||
const searchData = {
|
||||
histories: [],
|
||||
teamId,
|
||||
reRankQuery: rewriteQuery,
|
||||
queries: concatQueries,
|
||||
reRankQuery: text,
|
||||
queries: [text],
|
||||
model: dataset.vectorModel,
|
||||
limit: Math.min(limit, 20000),
|
||||
similarity,
|
||||
datasetIds: [datasetId],
|
||||
searchMode,
|
||||
usingReRank: usingReRank && (await checkTeamReRankPermission(teamId))
|
||||
};
|
||||
const { searchRes, tokens, queryExtensionResult, deepSearchResult, ...result } = datasetDeepSearch
|
||||
? await deepRagSearch({
|
||||
...searchData,
|
||||
datasetDeepSearchModel,
|
||||
datasetDeepSearchMaxTimes,
|
||||
datasetDeepSearchBg
|
||||
})
|
||||
: await defaultSearchDatasetData({
|
||||
...searchData,
|
||||
datasetSearchUsingExtensionQuery,
|
||||
datasetSearchExtensionModel,
|
||||
datasetSearchExtensionBg
|
||||
});
|
||||
|
||||
// push bill
|
||||
@@ -80,11 +87,15 @@ async function handler(req: NextApiRequest) {
|
||||
model: dataset.vectorModel,
|
||||
source: apikey ? UsageSourceEnum.api : UsageSourceEnum.fastgpt,
|
||||
|
||||
...(aiExtensionResult &&
|
||||
extensionModel && {
|
||||
extensionModel: extensionModel.name,
|
||||
extensionInputTokens: aiExtensionResult.inputTokens,
|
||||
extensionOutputTokens: aiExtensionResult.outputTokens
|
||||
...(queryExtensionResult && {
|
||||
extensionModel: queryExtensionResult.model,
|
||||
extensionInputTokens: queryExtensionResult.inputTokens,
|
||||
extensionOutputTokens: queryExtensionResult.outputTokens
|
||||
}),
|
||||
...(deepSearchResult && {
|
||||
deepSearchModel: deepSearchResult.model,
|
||||
deepSearchInputTokens: deepSearchResult.inputTokens,
|
||||
deepSearchOutputTokens: deepSearchResult.outputTokens
|
||||
})
|
||||
});
|
||||
if (apikey) {
|
||||
@@ -97,7 +108,7 @@ async function handler(req: NextApiRequest) {
|
||||
return {
|
||||
list: searchRes,
|
||||
duration: `${((Date.now() - start) / 1000).toFixed(3)}s`,
|
||||
queryExtensionModel: aiExtensionResult?.model,
|
||||
queryExtensionModel: queryExtensionResult?.model,
|
||||
...result
|
||||
};
|
||||
}
|
||||
|
@@ -81,7 +81,7 @@ const Login = ({ ChineseRedirectUrl }: { ChineseRedirectUrl: string }) => {
|
||||
router.push(navigateTo);
|
||||
}, 300);
|
||||
},
|
||||
[lastRoute, router, setUserInfo]
|
||||
[lastRoute, router, setUserInfo, llmModelList]
|
||||
);
|
||||
|
||||
const DynamicComponent = useMemo(() => {
|
||||
|
@@ -95,7 +95,10 @@ export const pushGenerateVectorUsage = ({
|
||||
source = UsageSourceEnum.fastgpt,
|
||||
extensionModel,
|
||||
extensionInputTokens,
|
||||
extensionOutputTokens
|
||||
extensionOutputTokens,
|
||||
deepSearchModel,
|
||||
deepSearchInputTokens,
|
||||
deepSearchOutputTokens
|
||||
}: {
|
||||
billId?: string;
|
||||
teamId: string;
|
||||
@@ -107,6 +110,10 @@ export const pushGenerateVectorUsage = ({
|
||||
extensionModel?: string;
|
||||
extensionInputTokens?: number;
|
||||
extensionOutputTokens?: number;
|
||||
|
||||
deepSearchModel?: string;
|
||||
deepSearchInputTokens?: number;
|
||||
deepSearchOutputTokens?: number;
|
||||
}) => {
|
||||
const { totalPoints: totalVector, modelName: vectorModelName } = formatModelChars2Points({
|
||||
modelType: ModelTypeEnum.embedding,
|
||||
@@ -131,8 +138,25 @@ export const pushGenerateVectorUsage = ({
|
||||
extensionModelName: modelName
|
||||
};
|
||||
})();
|
||||
const { deepSearchTotalPoints, deepSearchModelName } = (() => {
|
||||
if (!deepSearchModel || !deepSearchInputTokens)
|
||||
return {
|
||||
deepSearchTotalPoints: 0,
|
||||
deepSearchModelName: ''
|
||||
};
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
modelType: ModelTypeEnum.llm,
|
||||
model: deepSearchModel,
|
||||
inputTokens: deepSearchInputTokens,
|
||||
outputTokens: deepSearchOutputTokens
|
||||
});
|
||||
return {
|
||||
deepSearchTotalPoints: totalPoints,
|
||||
deepSearchModelName: modelName
|
||||
};
|
||||
})();
|
||||
|
||||
const totalPoints = totalVector + extensionTotalPoints;
|
||||
const totalPoints = totalVector + extensionTotalPoints + deepSearchTotalPoints;
|
||||
|
||||
// 插入 Bill 记录
|
||||
if (billId) {
|
||||
@@ -148,12 +172,12 @@ export const pushGenerateVectorUsage = ({
|
||||
createUsage({
|
||||
teamId,
|
||||
tmbId,
|
||||
appName: 'support.wallet.moduleName.index',
|
||||
appName: i18nT('common:support.wallet.moduleName.index'),
|
||||
totalPoints,
|
||||
source,
|
||||
list: [
|
||||
{
|
||||
moduleName: 'support.wallet.moduleName.index',
|
||||
moduleName: i18nT('common:support.wallet.moduleName.index'),
|
||||
amount: totalVector,
|
||||
model: vectorModelName,
|
||||
inputTokens
|
||||
@@ -161,13 +185,24 @@ export const pushGenerateVectorUsage = ({
|
||||
...(extensionModel !== undefined
|
||||
? [
|
||||
{
|
||||
moduleName: 'core.module.template.Query extension',
|
||||
moduleName: i18nT('common:core.module.template.Query extension'),
|
||||
amount: extensionTotalPoints,
|
||||
model: extensionModelName,
|
||||
inputTokens: extensionInputTokens,
|
||||
outputTokens: extensionOutputTokens
|
||||
}
|
||||
]
|
||||
: []),
|
||||
...(deepSearchModel !== undefined
|
||||
? [
|
||||
{
|
||||
moduleName: i18nT('common:deep_rag_search'),
|
||||
amount: deepSearchTotalPoints,
|
||||
model: deepSearchModelName,
|
||||
inputTokens: deepSearchInputTokens,
|
||||
outputTokens: deepSearchOutputTokens
|
||||
}
|
||||
]
|
||||
: [])
|
||||
]
|
||||
});
|
||||
|
@@ -179,6 +179,12 @@ export const streamFetch = ({
|
||||
})();
|
||||
// console.log(parseJson, event);
|
||||
if (event === SseResponseEventEnum.answer) {
|
||||
const reasoningText = parseJson.choices?.[0]?.delta?.reasoning_content || '';
|
||||
onMessage({
|
||||
event,
|
||||
reasoningText
|
||||
});
|
||||
|
||||
const text = parseJson.choices?.[0]?.delta?.content || '';
|
||||
for (const item of text) {
|
||||
pushDataToQueue({
|
||||
@@ -186,13 +192,13 @@ export const streamFetch = ({
|
||||
text: item
|
||||
});
|
||||
}
|
||||
|
||||
} else if (event === SseResponseEventEnum.fastAnswer) {
|
||||
const reasoningText = parseJson.choices?.[0]?.delta?.reasoning_content || '';
|
||||
onMessage({
|
||||
event,
|
||||
reasoningText
|
||||
});
|
||||
} else if (event === SseResponseEventEnum.fastAnswer) {
|
||||
|
||||
const text = parseJson.choices?.[0]?.delta?.content || '';
|
||||
pushDataToQueue({
|
||||
event,
|
||||
|
Reference in New Issue
Block a user