4.8.21 feature (#3742)

* model config

* feat: normalization embedding

* adapt unstrea  reasoning response

* remove select app

* perf: dataset search code

* fix: multiple audio video show

* perf: query extension output

* perf: link check

* perf: faq doc

* fix: ts

* feat: support reasoning text output

* feat: workflow support reasoning output
This commit is contained in:
Archer
2025-02-11 13:53:08 +08:00
committed by GitHub
parent 896a3f1472
commit 8738c32fb0
45 changed files with 640 additions and 570 deletions

View File

@@ -106,7 +106,6 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
}
aiChatVision = modelConstantsData.vision && aiChatVision;
stream = stream && isResponseAnswerText;
aiChatReasoning = !!aiChatReasoning && !!modelConstantsData.reasoning;
const chatHistories = getHistories(history, histories);
@@ -202,6 +201,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
res,
stream: response,
aiChatReasoning,
isResponseAnswerText,
workflowStreamResponse
});
@@ -212,19 +212,27 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
} else {
const unStreamResponse = response as ChatCompletion;
const answer = unStreamResponse.choices?.[0]?.message?.content || '';
const reasoning = aiChatReasoning
? // @ts-ignore
unStreamResponse.choices?.[0]?.message?.reasoning_content || ''
: '';
// @ts-ignore
const reasoning = unStreamResponse.choices?.[0]?.message?.reasoning_content || '';
// Some models do not support streaming
if (stream) {
// Some models do not support streaming
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
text: answer,
reasoning_content: reasoning
})
});
if (isResponseAnswerText && answer) {
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
text: answer
})
});
}
if (aiChatReasoning && reasoning) {
workflowStreamResponse?.({
event: SseResponseEventEnum.fastAnswer,
data: textAdaptGptResponse({
reasoning_content: reasoning
})
});
}
}
return {
@@ -269,6 +277,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
outputTokens: outputTokens,
query: `${userChatInput}`,
maxToken: max_tokens,
reasoningText,
historyPreview: getHistoryPreview(chatCompleteMessages, 10000, aiChatVision),
contextTotalLen: completeMessages.length
},
@@ -476,12 +485,14 @@ async function streamResponse({
res,
stream,
workflowStreamResponse,
aiChatReasoning
aiChatReasoning,
isResponseAnswerText
}: {
res: NextApiResponse;
stream: StreamChatType;
workflowStreamResponse?: WorkflowResponseType;
aiChatReasoning?: boolean;
isResponseAnswerText?: boolean;
}) {
const write = responseWriteController({
res,
@@ -497,20 +508,27 @@ async function streamResponse({
const content = part.choices?.[0]?.delta?.content || '';
answer += content;
if (isResponseAnswerText && content) {
workflowStreamResponse?.({
write,
event: SseResponseEventEnum.answer,
data: textAdaptGptResponse({
text: content
})
});
}
const reasoningContent = aiChatReasoning
? part.choices?.[0]?.delta?.reasoning_content || ''
: '';
const reasoningContent = part.choices?.[0]?.delta?.reasoning_content || '';
reasoning += reasoningContent;
workflowStreamResponse?.({
write,
event: SseResponseEventEnum.answer,
data: textAdaptGptResponse({
text: content,
reasoning_content: reasoningContent
})
});
if (aiChatReasoning && reasoningContent) {
workflowStreamResponse?.({
write,
event: SseResponseEventEnum.answer,
data: textAdaptGptResponse({
reasoning_content: reasoningContent
})
});
}
}
return { answer, reasoning };

View File

@@ -6,13 +6,11 @@ import { formatModelChars2Points } from '../../../../support/wallet/usage/utils'
import type { SelectedDatasetType } from '@fastgpt/global/core/workflow/api.d';
import type { SearchDataResponseItemType } from '@fastgpt/global/core/dataset/type';
import type { ModuleDispatchProps } from '@fastgpt/global/core/workflow/runtime/type';
import { getLLMModel, getEmbeddingModel } from '../../../ai/model';
import { searchDatasetData } from '../../../dataset/search/controller';
import { getEmbeddingModel } from '../../../ai/model';
import { deepRagSearch, defaultSearchDatasetData } from '../../../dataset/search/controller';
import { NodeInputKeyEnum, NodeOutputKeyEnum } from '@fastgpt/global/core/workflow/constants';
import { DispatchNodeResponseKeyEnum } from '@fastgpt/global/core/workflow/runtime/constants';
import { DatasetSearchModeEnum } from '@fastgpt/global/core/dataset/constants';
import { getHistories } from '../utils';
import { datasetSearchQueryExtension } from '../../../dataset/search/utils';
import { ChatNodeUsageType } from '@fastgpt/global/support/wallet/bill/type';
import { checkTeamReRankPermission } from '../../../../support/permission/teamLimit';
import { MongoDataset } from '../../../dataset/schema';
@@ -27,11 +25,17 @@ type DatasetSearchProps = ModuleDispatchProps<{
[NodeInputKeyEnum.datasetSearchMode]: `${DatasetSearchModeEnum}`;
[NodeInputKeyEnum.userChatInput]: string;
[NodeInputKeyEnum.datasetSearchUsingReRank]: boolean;
[NodeInputKeyEnum.collectionFilterMatch]: string;
[NodeInputKeyEnum.authTmbId]: boolean;
[NodeInputKeyEnum.datasetSearchUsingExtensionQuery]: boolean;
[NodeInputKeyEnum.datasetSearchExtensionModel]: string;
[NodeInputKeyEnum.datasetSearchExtensionBg]: string;
[NodeInputKeyEnum.collectionFilterMatch]: string;
[NodeInputKeyEnum.authTmbId]: boolean;
[NodeInputKeyEnum.datasetDeepSearch]?: boolean;
[NodeInputKeyEnum.datasetDeepSearchModel]?: string;
[NodeInputKeyEnum.datasetDeepSearchMaxTimes]?: number;
[NodeInputKeyEnum.datasetDeepSearchBg]?: string;
}>;
export type DatasetSearchResponse = DispatchNodeResultType<{
[NodeOutputKeyEnum.datasetQuoteQA]: SearchDataResponseItemType[];
@@ -52,12 +56,17 @@ export async function dispatchDatasetSearch(
usingReRank,
searchMode,
userChatInput,
authTmbId = false,
collectionFilterMatch,
datasetSearchUsingExtensionQuery,
datasetSearchExtensionModel,
datasetSearchExtensionBg,
collectionFilterMatch,
authTmbId = false
datasetDeepSearch,
datasetDeepSearchModel,
datasetDeepSearchMaxTimes,
datasetDeepSearchBg
}
} = props as DatasetSearchProps;
@@ -85,25 +94,12 @@ export async function dispatchDatasetSearch(
return emptyResult;
}
// query extension
const extensionModel = datasetSearchUsingExtensionQuery
? getLLMModel(datasetSearchExtensionModel)
: undefined;
const [{ concatQueries, rewriteQuery, aiExtensionResult }, datasetIds] = await Promise.all([
datasetSearchQueryExtension({
query: userChatInput,
extensionModel,
extensionBg: datasetSearchExtensionBg,
histories: getHistories(6, histories)
}),
authTmbId
? filterDatasetsByTmbId({
datasetIds: datasets.map((item) => item.datasetId),
tmbId
})
: Promise.resolve(datasets.map((item) => item.datasetId))
]);
const datasetIds = authTmbId
? await filterDatasetsByTmbId({
datasetIds: datasets.map((item) => item.datasetId),
tmbId
})
: await Promise.resolve(datasets.map((item) => item.datasetId));
if (datasetIds.length === 0) {
return emptyResult;
@@ -116,15 +112,11 @@ export async function dispatchDatasetSearch(
);
// start search
const {
searchRes,
tokens,
usingSimilarityFilter,
usingReRank: searchUsingReRank
} = await searchDatasetData({
const searchData = {
histories,
teamId,
reRankQuery: `${rewriteQuery}`,
queries: concatQueries,
reRankQuery: userChatInput,
queries: [userChatInput],
model: vectorModel.model,
similarity,
limit,
@@ -132,59 +124,106 @@ export async function dispatchDatasetSearch(
searchMode,
usingReRank: usingReRank && (await checkTeamReRankPermission(teamId)),
collectionFilterMatch
});
};
const {
searchRes,
tokens,
usingSimilarityFilter,
usingReRank: searchUsingReRank,
queryExtensionResult,
deepSearchResult
} = datasetDeepSearch
? await deepRagSearch({
...searchData,
datasetDeepSearchModel,
datasetDeepSearchMaxTimes,
datasetDeepSearchBg
})
: await defaultSearchDatasetData({
...searchData,
datasetSearchUsingExtensionQuery,
datasetSearchExtensionModel,
datasetSearchExtensionBg
});
// count bill results
const nodeDispatchUsages: ChatNodeUsageType[] = [];
// vector
const { totalPoints, modelName } = formatModelChars2Points({
model: vectorModel.model,
inputTokens: tokens,
modelType: ModelTypeEnum.embedding
const { totalPoints: embeddingTotalPoints, modelName: embeddingModelName } =
formatModelChars2Points({
model: vectorModel.model,
inputTokens: tokens,
modelType: ModelTypeEnum.embedding
});
nodeDispatchUsages.push({
totalPoints: embeddingTotalPoints,
moduleName: node.name,
model: embeddingModelName,
inputTokens: tokens
});
// Query extension
const { totalPoints: queryExtensionTotalPoints } = (() => {
if (queryExtensionResult) {
const { totalPoints, modelName } = formatModelChars2Points({
model: queryExtensionResult.model,
inputTokens: queryExtensionResult.inputTokens,
outputTokens: queryExtensionResult.outputTokens,
modelType: ModelTypeEnum.llm
});
nodeDispatchUsages.push({
totalPoints,
moduleName: i18nT('common:core.module.template.Query extension'),
model: modelName,
inputTokens: queryExtensionResult.inputTokens,
outputTokens: queryExtensionResult.outputTokens
});
return {
totalPoints
};
}
return {
totalPoints: 0
};
})();
// Deep search
const { totalPoints: deepSearchTotalPoints } = (() => {
if (deepSearchResult) {
const { totalPoints, modelName } = formatModelChars2Points({
model: deepSearchResult.model,
inputTokens: deepSearchResult.inputTokens,
outputTokens: deepSearchResult.outputTokens,
modelType: ModelTypeEnum.llm
});
nodeDispatchUsages.push({
totalPoints,
moduleName: i18nT('common:deep_rag_search'),
model: modelName,
inputTokens: deepSearchResult.inputTokens,
outputTokens: deepSearchResult.outputTokens
});
return {
totalPoints
};
}
return {
totalPoints: 0
};
})();
const totalPoints = embeddingTotalPoints + queryExtensionTotalPoints + deepSearchTotalPoints;
const responseData: DispatchNodeResponseType & { totalPoints: number } = {
totalPoints,
query: concatQueries.join('\n'),
model: modelName,
query: userChatInput,
model: vectorModel.model,
inputTokens: tokens,
similarity: usingSimilarityFilter ? similarity : undefined,
limit,
searchMode,
searchUsingReRank: searchUsingReRank,
quoteList: searchRes
quoteList: searchRes,
queryExtensionResult,
deepSearchResult
};
const nodeDispatchUsages: ChatNodeUsageType[] = [
{
totalPoints,
moduleName: node.name,
model: modelName,
inputTokens: tokens
}
];
if (aiExtensionResult) {
const { totalPoints, modelName } = formatModelChars2Points({
model: aiExtensionResult.model,
inputTokens: aiExtensionResult.inputTokens,
outputTokens: aiExtensionResult.outputTokens,
modelType: ModelTypeEnum.llm
});
responseData.totalPoints += totalPoints;
responseData.inputTokens = aiExtensionResult.inputTokens;
responseData.outputTokens = aiExtensionResult.outputTokens;
responseData.extensionModel = modelName;
responseData.extensionResult =
aiExtensionResult.extensionQueries?.join('\n') ||
JSON.stringify(aiExtensionResult.extensionQueries);
nodeDispatchUsages.push({
totalPoints,
moduleName: 'core.module.template.Query extension',
model: modelName,
inputTokens: aiExtensionResult.inputTokens,
outputTokens: aiExtensionResult.outputTokens
});
}
return {
quoteQA: searchRes,