mirror of
https://github.com/labring/FastGPT.git
synced 2025-10-15 15:41:05 +00:00
4.8.21 feature (#3742)
* model config * feat: normalization embedding * adapt unstrea reasoning response * remove select app * perf: dataset search code * fix: multiple audio video show * perf: query extension output * perf: link check * perf: faq doc * fix: ts * feat: support reasoning text output * feat: workflow support reasoning output
This commit is contained in:
@@ -1,277 +0,0 @@
|
||||
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
|
||||
import { ChatItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { DatasetSearchModeEnum } from '@fastgpt/global/core/dataset/constants';
|
||||
import { getLLMModel } from '../../ai/model';
|
||||
import { filterGPTMessageByMaxContext } from '../../chat/utils';
|
||||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||||
import { createChatCompletion } from '../../ai/config';
|
||||
import { llmCompletionsBodyFormat } from '../../ai/utils';
|
||||
import { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type';
|
||||
import { SearchDataResponseItemType } from '@fastgpt/global/core/dataset/type';
|
||||
import { searchDatasetData } from './controller';
|
||||
|
||||
type SearchDatasetDataProps = {
|
||||
queries: string[];
|
||||
histories: ChatItemType[];
|
||||
teamId: string;
|
||||
model: string;
|
||||
similarity?: number; // min distance
|
||||
limit: number; // max Token limit
|
||||
datasetIds: string[];
|
||||
searchMode?: `${DatasetSearchModeEnum}`;
|
||||
usingReRank?: boolean;
|
||||
reRankQuery: string;
|
||||
|
||||
/*
|
||||
{
|
||||
tags: {
|
||||
$and: ["str1","str2"],
|
||||
$or: ["str1","str2",null] null means no tags
|
||||
},
|
||||
createTime: {
|
||||
$gte: 'xx',
|
||||
$lte: 'xxx'
|
||||
}
|
||||
}
|
||||
*/
|
||||
collectionFilterMatch?: string;
|
||||
};
|
||||
|
||||
const analyzeQuery = async ({ query, histories }: { query: string; histories: ChatItemType[] }) => {
|
||||
const modelData = getLLMModel('gpt-4o-mini');
|
||||
|
||||
const systemFewShot = `
|
||||
## 知识背景
|
||||
FastGPT 是低代码AI应用构建平台,支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
|
||||
|
||||
## 任务目标
|
||||
基于用户历史对话和知识背景,生成多维度检索方案,确保覆盖核心语义及潜在关联维度。
|
||||
|
||||
## 工作流程
|
||||
1. 问题解构阶段
|
||||
[意图识别] 提取用户问题的核心实体和关系:
|
||||
- 显性需求:直接提及的关键词
|
||||
- 隐性需求:可能涉及的关联概念
|
||||
[示例] 若问题为"推荐手机",需考虑价格、品牌、使用场景等维度
|
||||
|
||||
2. 完整性校验阶段
|
||||
[完整性评估] 检查是否缺失核心实体和关系:
|
||||
- 主语完整
|
||||
- 多实体关系准确
|
||||
[维度扩展] 检查是否需要补充:
|
||||
□ 时间范围 □ 地理限定 □ 比较维度
|
||||
□ 专业术语 □ 同义词替换 □ 场景参数
|
||||
|
||||
3. 检索生成阶段
|
||||
[组合策略] 生成包含以下要素的查询序列:
|
||||
① 基础查询(核心关键词)
|
||||
② 扩展查询(核心+同义词)
|
||||
③ 场景查询(核心+场景限定词)
|
||||
④ 逆向查询(相关技术/对比对象)
|
||||
|
||||
## 输出规范
|
||||
格式要求:
|
||||
1. 每个查询为完整陈述句
|
||||
2. 包含至少1个核心词+1个扩展维度
|
||||
3. 按查询范围从宽到窄排序
|
||||
|
||||
禁止项:
|
||||
- 使用问句形式
|
||||
- 包含解决方案描述
|
||||
- 超出话题范围的假设
|
||||
|
||||
## 执行示例
|
||||
用户问题:"如何优化数据检索速度"
|
||||
|
||||
查询内容:
|
||||
1. FastGPT 数据检索速度优化的常用方法
|
||||
2. FastGPT 大数据量下的语义检索性能提升方案
|
||||
3. FastGPT API 响应时间的优化指标
|
||||
|
||||
## 任务开始
|
||||
`.trim();
|
||||
const filterHistories = await filterGPTMessageByMaxContext({
|
||||
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
|
||||
maxContext: modelData.maxContext - 1000
|
||||
});
|
||||
|
||||
const messages = [
|
||||
{
|
||||
role: 'system',
|
||||
content: systemFewShot
|
||||
},
|
||||
...filterHistories,
|
||||
{
|
||||
role: 'user',
|
||||
content: query
|
||||
}
|
||||
] as any;
|
||||
|
||||
const { response: result } = await createChatCompletion({
|
||||
body: llmCompletionsBodyFormat(
|
||||
{
|
||||
stream: false,
|
||||
model: modelData.model,
|
||||
temperature: 0.1,
|
||||
messages
|
||||
},
|
||||
modelData
|
||||
)
|
||||
});
|
||||
let answer = result.choices?.[0]?.message?.content || '';
|
||||
|
||||
// Extract queries from the answer by line number
|
||||
const queries = answer
|
||||
.split('\n')
|
||||
.map((line) => {
|
||||
const match = line.match(/^\d+\.\s*(.+)$/);
|
||||
return match ? match[1].trim() : null;
|
||||
})
|
||||
.filter(Boolean) as string[];
|
||||
|
||||
if (queries.length === 0) {
|
||||
return [answer];
|
||||
}
|
||||
|
||||
return queries;
|
||||
};
|
||||
const checkQuery = async ({
|
||||
queries,
|
||||
histories,
|
||||
searchResult
|
||||
}: {
|
||||
queries: string[];
|
||||
histories: ChatItemType[];
|
||||
searchResult: SearchDataResponseItemType[];
|
||||
}) => {
|
||||
const modelData = getLLMModel('gpt-4o-mini');
|
||||
|
||||
const systemFewShot = `
|
||||
## 知识背景
|
||||
FastGPT 是低代码AI应用构建平台,支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
|
||||
|
||||
## 查询结果
|
||||
${searchResult.map((item) => item.q + item.a).join('---\n---')}
|
||||
|
||||
## 任务目标
|
||||
检查"检索结果"是否覆盖用户的问题,如果无法覆盖用户问题,则再次生成检索方案。
|
||||
|
||||
## 工作流程
|
||||
1. 检查检索结果是否覆盖用户的问题
|
||||
2. 如果检索结果覆盖用户问题,则直接输出:"Done"
|
||||
3. 如果无法覆盖用户问题,则结合用户问题和检索结果,生成进一步的检索方案,进行深度检索
|
||||
|
||||
## 输出规范
|
||||
|
||||
1. 每个查询均为完整的查询语句
|
||||
2. 通过序号来表示多个检索内容
|
||||
|
||||
## 输出示例1
|
||||
Done
|
||||
|
||||
## 输出示例2
|
||||
1. 环界云计算的办公地址
|
||||
2. 环界云计算的注册地址在哪里
|
||||
|
||||
## 任务开始
|
||||
`.trim();
|
||||
const filterHistories = await filterGPTMessageByMaxContext({
|
||||
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
|
||||
maxContext: modelData.maxContext - 1000
|
||||
});
|
||||
|
||||
const messages = [
|
||||
{
|
||||
role: 'system',
|
||||
content: systemFewShot
|
||||
},
|
||||
...filterHistories,
|
||||
{
|
||||
role: 'user',
|
||||
content: queries.join('\n')
|
||||
}
|
||||
] as any;
|
||||
console.log(messages);
|
||||
const { response: result } = await createChatCompletion({
|
||||
body: llmCompletionsBodyFormat(
|
||||
{
|
||||
stream: false,
|
||||
model: modelData.model,
|
||||
temperature: 0.1,
|
||||
messages
|
||||
},
|
||||
modelData
|
||||
)
|
||||
});
|
||||
let answer = result.choices?.[0]?.message?.content || '';
|
||||
console.log(answer);
|
||||
if (answer.includes('Done')) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const nextQueries = answer
|
||||
.split('\n')
|
||||
.map((line) => {
|
||||
const match = line.match(/^\d+\.\s*(.+)$/);
|
||||
return match ? match[1].trim() : null;
|
||||
})
|
||||
.filter(Boolean) as string[];
|
||||
|
||||
return nextQueries;
|
||||
};
|
||||
export const agentSearchDatasetData = async ({
|
||||
searchRes = [],
|
||||
tokens = 0,
|
||||
...props
|
||||
}: SearchDatasetDataProps & {
|
||||
searchRes?: SearchDataResponseItemType[];
|
||||
tokens?: number;
|
||||
}) => {
|
||||
const query = props.queries[0];
|
||||
|
||||
const searchResultList: SearchDataResponseItemType[] = [];
|
||||
let searchQueries: string[] = [];
|
||||
|
||||
// 1. agent 分析问题
|
||||
searchQueries = await analyzeQuery({ query, histories: props.histories });
|
||||
|
||||
// 2. 检索内容 + 检查
|
||||
let retryTimes = 3;
|
||||
while (true) {
|
||||
retryTimes--;
|
||||
if (retryTimes < 0) break;
|
||||
|
||||
console.log(searchQueries, '--');
|
||||
const { searchRes: searchRes2, tokens: tokens2 } = await searchDatasetData({
|
||||
...props,
|
||||
queries: searchQueries
|
||||
});
|
||||
// console.log(searchRes2.map((item) => item.q));
|
||||
// deduplicate and merge search results
|
||||
const uniqueResults = searchRes2.filter((item) => {
|
||||
return !searchResultList.some((existingItem) => existingItem.id === item.id);
|
||||
});
|
||||
searchResultList.push(...uniqueResults);
|
||||
if (uniqueResults.length === 0) break;
|
||||
|
||||
const checkResult = await checkQuery({
|
||||
queries: searchQueries,
|
||||
histories: props.histories,
|
||||
searchResult: searchRes2
|
||||
});
|
||||
|
||||
if (checkResult.length > 0) {
|
||||
searchQueries = checkResult;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
console.log(searchResultList.length);
|
||||
return {
|
||||
searchRes: searchResultList,
|
||||
tokens: 0,
|
||||
usingSimilarityFilter: false,
|
||||
usingReRank: false
|
||||
};
|
||||
};
|
@@ -5,7 +5,7 @@ import {
|
||||
} from '@fastgpt/global/core/dataset/constants';
|
||||
import { recallFromVectorStore } from '../../../common/vectorStore/controller';
|
||||
import { getVectorsByText } from '../../ai/embedding';
|
||||
import { getEmbeddingModel, getDefaultRerankModel } from '../../ai/model';
|
||||
import { getEmbeddingModel, getDefaultRerankModel, getLLMModel } from '../../ai/model';
|
||||
import { MongoDatasetData } from '../data/schema';
|
||||
import {
|
||||
DatasetDataTextSchemaType,
|
||||
@@ -24,19 +24,23 @@ import { MongoDatasetCollectionTags } from '../tag/schema';
|
||||
import { readFromSecondary } from '../../../common/mongo/utils';
|
||||
import { MongoDatasetDataText } from '../data/dataTextSchema';
|
||||
import { ChatItemType } from '@fastgpt/global/core/chat/type';
|
||||
import { POST } from '../../../common/api/plusRequest';
|
||||
import { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
|
||||
import { datasetSearchQueryExtension } from './utils';
|
||||
|
||||
type SearchDatasetDataProps = {
|
||||
histories?: ChatItemType[];
|
||||
export type SearchDatasetDataProps = {
|
||||
histories: ChatItemType[];
|
||||
teamId: string;
|
||||
model: string;
|
||||
similarity?: number; // min distance
|
||||
limit: number; // max Token limit
|
||||
datasetIds: string[];
|
||||
searchMode?: `${DatasetSearchModeEnum}`;
|
||||
usingReRank?: boolean;
|
||||
reRankQuery: string;
|
||||
queries: string[];
|
||||
|
||||
[NodeInputKeyEnum.datasetSimilarity]?: number; // min distance
|
||||
[NodeInputKeyEnum.datasetMaxTokens]: number; // max Token limit
|
||||
[NodeInputKeyEnum.datasetSearchMode]?: `${DatasetSearchModeEnum}`;
|
||||
[NodeInputKeyEnum.datasetSearchUsingReRank]?: boolean;
|
||||
|
||||
/*
|
||||
{
|
||||
tags: {
|
||||
@@ -52,7 +56,96 @@ type SearchDatasetDataProps = {
|
||||
collectionFilterMatch?: string;
|
||||
};
|
||||
|
||||
export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
export type SearchDatasetDataResponse = {
|
||||
searchRes: SearchDataResponseItemType[];
|
||||
tokens: number;
|
||||
searchMode: `${DatasetSearchModeEnum}`;
|
||||
limit: number;
|
||||
similarity: number;
|
||||
usingReRank: boolean;
|
||||
usingSimilarityFilter: boolean;
|
||||
|
||||
queryExtensionResult?: {
|
||||
model: string;
|
||||
inputTokens: number;
|
||||
outputTokens: number;
|
||||
query: string;
|
||||
};
|
||||
deepSearchResult?: { model: string; inputTokens: number; outputTokens: number };
|
||||
};
|
||||
|
||||
export const datasetDataReRank = async ({
|
||||
data,
|
||||
query
|
||||
}: {
|
||||
data: SearchDataResponseItemType[];
|
||||
query: string;
|
||||
}): Promise<SearchDataResponseItemType[]> => {
|
||||
const results = await reRankRecall({
|
||||
query,
|
||||
documents: data.map((item) => ({
|
||||
id: item.id,
|
||||
text: `${item.q}\n${item.a}`
|
||||
}))
|
||||
});
|
||||
|
||||
if (results.length === 0) {
|
||||
return Promise.reject('Rerank error');
|
||||
}
|
||||
|
||||
// add new score to data
|
||||
const mergeResult = results
|
||||
.map((item, index) => {
|
||||
const target = data.find((dataItem) => dataItem.id === item.id);
|
||||
if (!target) return null;
|
||||
const score = item.score || 0;
|
||||
|
||||
return {
|
||||
...target,
|
||||
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
|
||||
};
|
||||
})
|
||||
.filter(Boolean) as SearchDataResponseItemType[];
|
||||
|
||||
return mergeResult;
|
||||
};
|
||||
export const filterDatasetDataByMaxTokens = async (
|
||||
data: SearchDataResponseItemType[],
|
||||
maxTokens: number
|
||||
) => {
|
||||
const filterMaxTokensResult = await (async () => {
|
||||
// Count tokens
|
||||
const tokensScoreFilter = await Promise.all(
|
||||
data.map(async (item) => ({
|
||||
...item,
|
||||
tokens: await countPromptTokens(item.q + item.a)
|
||||
}))
|
||||
);
|
||||
|
||||
const results: SearchDataResponseItemType[] = [];
|
||||
let totalTokens = 0;
|
||||
|
||||
for await (const item of tokensScoreFilter) {
|
||||
totalTokens += item.tokens;
|
||||
|
||||
if (totalTokens > maxTokens + 500) {
|
||||
break;
|
||||
}
|
||||
results.push(item);
|
||||
if (totalTokens > maxTokens) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return results.length === 0 ? data.slice(0, 1) : results;
|
||||
})();
|
||||
|
||||
return filterMaxTokensResult;
|
||||
};
|
||||
|
||||
export async function searchDatasetData(
|
||||
props: SearchDatasetDataProps
|
||||
): Promise<SearchDatasetDataResponse> {
|
||||
let {
|
||||
teamId,
|
||||
reRankQuery,
|
||||
@@ -457,47 +550,6 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
tokenLen: 0
|
||||
};
|
||||
};
|
||||
const reRankSearchResult = async ({
|
||||
data,
|
||||
query
|
||||
}: {
|
||||
data: SearchDataResponseItemType[];
|
||||
query: string;
|
||||
}): Promise<SearchDataResponseItemType[]> => {
|
||||
try {
|
||||
const results = await reRankRecall({
|
||||
query,
|
||||
documents: data.map((item) => ({
|
||||
id: item.id,
|
||||
text: `${item.q}\n${item.a}`
|
||||
}))
|
||||
});
|
||||
|
||||
if (results.length === 0) {
|
||||
usingReRank = false;
|
||||
return [];
|
||||
}
|
||||
|
||||
// add new score to data
|
||||
const mergeResult = results
|
||||
.map((item, index) => {
|
||||
const target = data.find((dataItem) => dataItem.id === item.id);
|
||||
if (!target) return null;
|
||||
const score = item.score || 0;
|
||||
|
||||
return {
|
||||
...target,
|
||||
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
|
||||
};
|
||||
})
|
||||
.filter(Boolean) as SearchDataResponseItemType[];
|
||||
|
||||
return mergeResult;
|
||||
} catch (error) {
|
||||
usingReRank = false;
|
||||
return [];
|
||||
}
|
||||
};
|
||||
const multiQueryRecall = async ({
|
||||
embeddingLimit,
|
||||
fullTextLimit
|
||||
@@ -582,10 +634,15 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
set.add(str);
|
||||
return true;
|
||||
});
|
||||
return reRankSearchResult({
|
||||
query: reRankQuery,
|
||||
data: filterSameDataResults
|
||||
});
|
||||
try {
|
||||
return datasetDataReRank({
|
||||
query: reRankQuery,
|
||||
data: filterSameDataResults
|
||||
});
|
||||
} catch (error) {
|
||||
usingReRank = false;
|
||||
return [];
|
||||
}
|
||||
})();
|
||||
|
||||
// embedding recall and fullText recall rrf concat
|
||||
@@ -630,31 +687,7 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
})();
|
||||
|
||||
// token filter
|
||||
const filterMaxTokensResult = await (async () => {
|
||||
const tokensScoreFilter = await Promise.all(
|
||||
scoreFilter.map(async (item) => ({
|
||||
...item,
|
||||
tokens: await countPromptTokens(item.q + item.a)
|
||||
}))
|
||||
);
|
||||
|
||||
const results: SearchDataResponseItemType[] = [];
|
||||
let totalTokens = 0;
|
||||
|
||||
for await (const item of tokensScoreFilter) {
|
||||
totalTokens += item.tokens;
|
||||
|
||||
if (totalTokens > maxTokens + 500) {
|
||||
break;
|
||||
}
|
||||
results.push(item);
|
||||
if (totalTokens > maxTokens) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return results.length === 0 ? scoreFilter.slice(0, 1) : results;
|
||||
})();
|
||||
const filterMaxTokensResult = await filterDatasetDataByMaxTokens(scoreFilter, maxTokens);
|
||||
|
||||
return {
|
||||
searchRes: filterMaxTokensResult,
|
||||
@@ -666,3 +699,53 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
|
||||
usingSimilarityFilter
|
||||
};
|
||||
}
|
||||
|
||||
export type DefaultSearchDatasetDataProps = SearchDatasetDataProps & {
|
||||
[NodeInputKeyEnum.datasetSearchUsingExtensionQuery]?: boolean;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionModel]?: string;
|
||||
[NodeInputKeyEnum.datasetSearchExtensionBg]?: string;
|
||||
};
|
||||
export const defaultSearchDatasetData = async ({
|
||||
datasetSearchUsingExtensionQuery,
|
||||
datasetSearchExtensionModel,
|
||||
datasetSearchExtensionBg,
|
||||
...props
|
||||
}: DefaultSearchDatasetDataProps): Promise<SearchDatasetDataResponse> => {
|
||||
const query = props.queries[0];
|
||||
|
||||
const extensionModel = datasetSearchUsingExtensionQuery
|
||||
? getLLMModel(datasetSearchExtensionModel)
|
||||
: undefined;
|
||||
|
||||
const { concatQueries, rewriteQuery, aiExtensionResult } = await datasetSearchQueryExtension({
|
||||
query,
|
||||
extensionModel,
|
||||
extensionBg: datasetSearchExtensionBg
|
||||
});
|
||||
|
||||
const result = await searchDatasetData({
|
||||
...props,
|
||||
reRankQuery: rewriteQuery,
|
||||
queries: concatQueries
|
||||
});
|
||||
|
||||
return {
|
||||
...result,
|
||||
queryExtensionResult: aiExtensionResult
|
||||
? {
|
||||
model: aiExtensionResult.model,
|
||||
inputTokens: aiExtensionResult.inputTokens,
|
||||
outputTokens: aiExtensionResult.outputTokens,
|
||||
query: concatQueries.join('\n')
|
||||
}
|
||||
: undefined
|
||||
};
|
||||
};
|
||||
|
||||
export type DeepRagSearchProps = SearchDatasetDataProps & {
|
||||
[NodeInputKeyEnum.datasetDeepSearchModel]?: string;
|
||||
[NodeInputKeyEnum.datasetDeepSearchMaxTimes]?: number;
|
||||
[NodeInputKeyEnum.datasetDeepSearchBg]?: string;
|
||||
};
|
||||
export const deepRagSearch = (data: DeepRagSearchProps) =>
|
||||
POST<SearchDatasetDataResponse>('/core/dataset/deepRag', data);
|
||||
|
Reference in New Issue
Block a user