4.8.21 feature (#3742)

* model config

* feat: normalization embedding

* adapt unstrea  reasoning response

* remove select app

* perf: dataset search code

* fix: multiple audio video show

* perf: query extension output

* perf: link check

* perf: faq doc

* fix: ts

* feat: support reasoning text output

* feat: workflow support reasoning output
This commit is contained in:
Archer
2025-02-11 13:53:08 +08:00
committed by GitHub
parent 896a3f1472
commit 8738c32fb0
45 changed files with 640 additions and 570 deletions

View File

@@ -1,277 +0,0 @@
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
import { ChatItemType } from '@fastgpt/global/core/chat/type';
import { DatasetSearchModeEnum } from '@fastgpt/global/core/dataset/constants';
import { getLLMModel } from '../../ai/model';
import { filterGPTMessageByMaxContext } from '../../chat/utils';
import { replaceVariable } from '@fastgpt/global/common/string/tools';
import { createChatCompletion } from '../../ai/config';
import { llmCompletionsBodyFormat } from '../../ai/utils';
import { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type';
import { SearchDataResponseItemType } from '@fastgpt/global/core/dataset/type';
import { searchDatasetData } from './controller';
type SearchDatasetDataProps = {
queries: string[];
histories: ChatItemType[];
teamId: string;
model: string;
similarity?: number; // min distance
limit: number; // max Token limit
datasetIds: string[];
searchMode?: `${DatasetSearchModeEnum}`;
usingReRank?: boolean;
reRankQuery: string;
/*
{
tags: {
$and: ["str1","str2"],
$or: ["str1","str2",null] null means no tags
},
createTime: {
$gte: 'xx',
$lte: 'xxx'
}
}
*/
collectionFilterMatch?: string;
};
const analyzeQuery = async ({ query, histories }: { query: string; histories: ChatItemType[] }) => {
const modelData = getLLMModel('gpt-4o-mini');
const systemFewShot = `
## 知识背景
FastGPT 是低代码AI应用构建平台支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
## 任务目标
基于用户历史对话和知识背景,生成多维度检索方案,确保覆盖核心语义及潜在关联维度。
## 工作流程
1. 问题解构阶段
[意图识别] 提取用户问题的核心实体和关系:
- 显性需求:直接提及的关键词
- 隐性需求:可能涉及的关联概念
[示例] 若问题为"推荐手机",需考虑价格、品牌、使用场景等维度
2. 完整性校验阶段
[完整性评估] 检查是否缺失核心实体和关系:
- 主语完整
- 多实体关系准确
[维度扩展] 检查是否需要补充:
□ 时间范围 □ 地理限定 □ 比较维度
□ 专业术语 □ 同义词替换 □ 场景参数
3. 检索生成阶段
[组合策略] 生成包含以下要素的查询序列:
① 基础查询(核心关键词)
② 扩展查询(核心+同义词)
③ 场景查询(核心+场景限定词)
④ 逆向查询(相关技术/对比对象)
## 输出规范
格式要求:
1. 每个查询为完整陈述句
2. 包含至少1个核心词+1个扩展维度
3. 按查询范围从宽到窄排序
禁止项:
- 使用问句形式
- 包含解决方案描述
- 超出话题范围的假设
## 执行示例
用户问题:"如何优化数据检索速度"
查询内容:
1. FastGPT 数据检索速度优化的常用方法
2. FastGPT 大数据量下的语义检索性能提升方案
3. FastGPT API 响应时间的优化指标
## 任务开始
`.trim();
const filterHistories = await filterGPTMessageByMaxContext({
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
maxContext: modelData.maxContext - 1000
});
const messages = [
{
role: 'system',
content: systemFewShot
},
...filterHistories,
{
role: 'user',
content: query
}
] as any;
const { response: result } = await createChatCompletion({
body: llmCompletionsBodyFormat(
{
stream: false,
model: modelData.model,
temperature: 0.1,
messages
},
modelData
)
});
let answer = result.choices?.[0]?.message?.content || '';
// Extract queries from the answer by line number
const queries = answer
.split('\n')
.map((line) => {
const match = line.match(/^\d+\.\s*(.+)$/);
return match ? match[1].trim() : null;
})
.filter(Boolean) as string[];
if (queries.length === 0) {
return [answer];
}
return queries;
};
const checkQuery = async ({
queries,
histories,
searchResult
}: {
queries: string[];
histories: ChatItemType[];
searchResult: SearchDataResponseItemType[];
}) => {
const modelData = getLLMModel('gpt-4o-mini');
const systemFewShot = `
## 知识背景
FastGPT 是低代码AI应用构建平台支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
## 查询结果
${searchResult.map((item) => item.q + item.a).join('---\n---')}
## 任务目标
检查"检索结果"是否覆盖用户的问题,如果无法覆盖用户问题,则再次生成检索方案。
## 工作流程
1. 检查检索结果是否覆盖用户的问题
2. 如果检索结果覆盖用户问题,则直接输出:"Done"
3. 如果无法覆盖用户问题,则结合用户问题和检索结果,生成进一步的检索方案,进行深度检索
## 输出规范
1. 每个查询均为完整的查询语句
2. 通过序号来表示多个检索内容
## 输出示例1
Done
## 输出示例2
1. 环界云计算的办公地址
2. 环界云计算的注册地址在哪里
## 任务开始
`.trim();
const filterHistories = await filterGPTMessageByMaxContext({
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
maxContext: modelData.maxContext - 1000
});
const messages = [
{
role: 'system',
content: systemFewShot
},
...filterHistories,
{
role: 'user',
content: queries.join('\n')
}
] as any;
console.log(messages);
const { response: result } = await createChatCompletion({
body: llmCompletionsBodyFormat(
{
stream: false,
model: modelData.model,
temperature: 0.1,
messages
},
modelData
)
});
let answer = result.choices?.[0]?.message?.content || '';
console.log(answer);
if (answer.includes('Done')) {
return [];
}
const nextQueries = answer
.split('\n')
.map((line) => {
const match = line.match(/^\d+\.\s*(.+)$/);
return match ? match[1].trim() : null;
})
.filter(Boolean) as string[];
return nextQueries;
};
export const agentSearchDatasetData = async ({
searchRes = [],
tokens = 0,
...props
}: SearchDatasetDataProps & {
searchRes?: SearchDataResponseItemType[];
tokens?: number;
}) => {
const query = props.queries[0];
const searchResultList: SearchDataResponseItemType[] = [];
let searchQueries: string[] = [];
// 1. agent 分析问题
searchQueries = await analyzeQuery({ query, histories: props.histories });
// 2. 检索内容 + 检查
let retryTimes = 3;
while (true) {
retryTimes--;
if (retryTimes < 0) break;
console.log(searchQueries, '--');
const { searchRes: searchRes2, tokens: tokens2 } = await searchDatasetData({
...props,
queries: searchQueries
});
// console.log(searchRes2.map((item) => item.q));
// deduplicate and merge search results
const uniqueResults = searchRes2.filter((item) => {
return !searchResultList.some((existingItem) => existingItem.id === item.id);
});
searchResultList.push(...uniqueResults);
if (uniqueResults.length === 0) break;
const checkResult = await checkQuery({
queries: searchQueries,
histories: props.histories,
searchResult: searchRes2
});
if (checkResult.length > 0) {
searchQueries = checkResult;
} else {
break;
}
}
console.log(searchResultList.length);
return {
searchRes: searchResultList,
tokens: 0,
usingSimilarityFilter: false,
usingReRank: false
};
};

View File

@@ -5,7 +5,7 @@ import {
} from '@fastgpt/global/core/dataset/constants';
import { recallFromVectorStore } from '../../../common/vectorStore/controller';
import { getVectorsByText } from '../../ai/embedding';
import { getEmbeddingModel, getDefaultRerankModel } from '../../ai/model';
import { getEmbeddingModel, getDefaultRerankModel, getLLMModel } from '../../ai/model';
import { MongoDatasetData } from '../data/schema';
import {
DatasetDataTextSchemaType,
@@ -24,19 +24,23 @@ import { MongoDatasetCollectionTags } from '../tag/schema';
import { readFromSecondary } from '../../../common/mongo/utils';
import { MongoDatasetDataText } from '../data/dataTextSchema';
import { ChatItemType } from '@fastgpt/global/core/chat/type';
import { POST } from '../../../common/api/plusRequest';
import { NodeInputKeyEnum } from '@fastgpt/global/core/workflow/constants';
import { datasetSearchQueryExtension } from './utils';
type SearchDatasetDataProps = {
histories?: ChatItemType[];
export type SearchDatasetDataProps = {
histories: ChatItemType[];
teamId: string;
model: string;
similarity?: number; // min distance
limit: number; // max Token limit
datasetIds: string[];
searchMode?: `${DatasetSearchModeEnum}`;
usingReRank?: boolean;
reRankQuery: string;
queries: string[];
[NodeInputKeyEnum.datasetSimilarity]?: number; // min distance
[NodeInputKeyEnum.datasetMaxTokens]: number; // max Token limit
[NodeInputKeyEnum.datasetSearchMode]?: `${DatasetSearchModeEnum}`;
[NodeInputKeyEnum.datasetSearchUsingReRank]?: boolean;
/*
{
tags: {
@@ -52,7 +56,96 @@ type SearchDatasetDataProps = {
collectionFilterMatch?: string;
};
export async function searchDatasetData(props: SearchDatasetDataProps) {
export type SearchDatasetDataResponse = {
searchRes: SearchDataResponseItemType[];
tokens: number;
searchMode: `${DatasetSearchModeEnum}`;
limit: number;
similarity: number;
usingReRank: boolean;
usingSimilarityFilter: boolean;
queryExtensionResult?: {
model: string;
inputTokens: number;
outputTokens: number;
query: string;
};
deepSearchResult?: { model: string; inputTokens: number; outputTokens: number };
};
export const datasetDataReRank = async ({
data,
query
}: {
data: SearchDataResponseItemType[];
query: string;
}): Promise<SearchDataResponseItemType[]> => {
const results = await reRankRecall({
query,
documents: data.map((item) => ({
id: item.id,
text: `${item.q}\n${item.a}`
}))
});
if (results.length === 0) {
return Promise.reject('Rerank error');
}
// add new score to data
const mergeResult = results
.map((item, index) => {
const target = data.find((dataItem) => dataItem.id === item.id);
if (!target) return null;
const score = item.score || 0;
return {
...target,
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
};
})
.filter(Boolean) as SearchDataResponseItemType[];
return mergeResult;
};
export const filterDatasetDataByMaxTokens = async (
data: SearchDataResponseItemType[],
maxTokens: number
) => {
const filterMaxTokensResult = await (async () => {
// Count tokens
const tokensScoreFilter = await Promise.all(
data.map(async (item) => ({
...item,
tokens: await countPromptTokens(item.q + item.a)
}))
);
const results: SearchDataResponseItemType[] = [];
let totalTokens = 0;
for await (const item of tokensScoreFilter) {
totalTokens += item.tokens;
if (totalTokens > maxTokens + 500) {
break;
}
results.push(item);
if (totalTokens > maxTokens) {
break;
}
}
return results.length === 0 ? data.slice(0, 1) : results;
})();
return filterMaxTokensResult;
};
export async function searchDatasetData(
props: SearchDatasetDataProps
): Promise<SearchDatasetDataResponse> {
let {
teamId,
reRankQuery,
@@ -457,47 +550,6 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
tokenLen: 0
};
};
const reRankSearchResult = async ({
data,
query
}: {
data: SearchDataResponseItemType[];
query: string;
}): Promise<SearchDataResponseItemType[]> => {
try {
const results = await reRankRecall({
query,
documents: data.map((item) => ({
id: item.id,
text: `${item.q}\n${item.a}`
}))
});
if (results.length === 0) {
usingReRank = false;
return [];
}
// add new score to data
const mergeResult = results
.map((item, index) => {
const target = data.find((dataItem) => dataItem.id === item.id);
if (!target) return null;
const score = item.score || 0;
return {
...target,
score: [{ type: SearchScoreTypeEnum.reRank, value: score, index }]
};
})
.filter(Boolean) as SearchDataResponseItemType[];
return mergeResult;
} catch (error) {
usingReRank = false;
return [];
}
};
const multiQueryRecall = async ({
embeddingLimit,
fullTextLimit
@@ -582,10 +634,15 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
set.add(str);
return true;
});
return reRankSearchResult({
query: reRankQuery,
data: filterSameDataResults
});
try {
return datasetDataReRank({
query: reRankQuery,
data: filterSameDataResults
});
} catch (error) {
usingReRank = false;
return [];
}
})();
// embedding recall and fullText recall rrf concat
@@ -630,31 +687,7 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
})();
// token filter
const filterMaxTokensResult = await (async () => {
const tokensScoreFilter = await Promise.all(
scoreFilter.map(async (item) => ({
...item,
tokens: await countPromptTokens(item.q + item.a)
}))
);
const results: SearchDataResponseItemType[] = [];
let totalTokens = 0;
for await (const item of tokensScoreFilter) {
totalTokens += item.tokens;
if (totalTokens > maxTokens + 500) {
break;
}
results.push(item);
if (totalTokens > maxTokens) {
break;
}
}
return results.length === 0 ? scoreFilter.slice(0, 1) : results;
})();
const filterMaxTokensResult = await filterDatasetDataByMaxTokens(scoreFilter, maxTokens);
return {
searchRes: filterMaxTokensResult,
@@ -666,3 +699,53 @@ export async function searchDatasetData(props: SearchDatasetDataProps) {
usingSimilarityFilter
};
}
export type DefaultSearchDatasetDataProps = SearchDatasetDataProps & {
[NodeInputKeyEnum.datasetSearchUsingExtensionQuery]?: boolean;
[NodeInputKeyEnum.datasetSearchExtensionModel]?: string;
[NodeInputKeyEnum.datasetSearchExtensionBg]?: string;
};
export const defaultSearchDatasetData = async ({
datasetSearchUsingExtensionQuery,
datasetSearchExtensionModel,
datasetSearchExtensionBg,
...props
}: DefaultSearchDatasetDataProps): Promise<SearchDatasetDataResponse> => {
const query = props.queries[0];
const extensionModel = datasetSearchUsingExtensionQuery
? getLLMModel(datasetSearchExtensionModel)
: undefined;
const { concatQueries, rewriteQuery, aiExtensionResult } = await datasetSearchQueryExtension({
query,
extensionModel,
extensionBg: datasetSearchExtensionBg
});
const result = await searchDatasetData({
...props,
reRankQuery: rewriteQuery,
queries: concatQueries
});
return {
...result,
queryExtensionResult: aiExtensionResult
? {
model: aiExtensionResult.model,
inputTokens: aiExtensionResult.inputTokens,
outputTokens: aiExtensionResult.outputTokens,
query: concatQueries.join('\n')
}
: undefined
};
};
export type DeepRagSearchProps = SearchDatasetDataProps & {
[NodeInputKeyEnum.datasetDeepSearchModel]?: string;
[NodeInputKeyEnum.datasetDeepSearchMaxTimes]?: number;
[NodeInputKeyEnum.datasetDeepSearchBg]?: string;
};
export const deepRagSearch = (data: DeepRagSearchProps) =>
POST<SearchDatasetDataResponse>('/core/dataset/deepRag', data);