Change embedding (#1463)

* rebuild embedding queue

* dataset menu

* feat: rebuild data api

* feat: ui change embedding model

* dataset ui

* feat: rebuild index ui

* rename collection
This commit is contained in:
Archer
2024-05-13 14:51:42 +08:00
committed by GitHub
parent 59fd94384d
commit 80a84a5733
37 changed files with 1260 additions and 419 deletions

View File

@@ -0,0 +1,178 @@
import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@fastgpt/service/common/response';
import { connectToDatabase } from '@/service/mongo';
import { authCert } from '@fastgpt/service/support/permission/auth/common';
import { PgClient } from '@fastgpt/service/common/vectorStore/pg';
import { NextAPI } from '@/service/middle/entry';
import { PgDatasetTableName } from '@fastgpt/global/common/vectorStore/constants';
import { connectionMongo } from '@fastgpt/service/common/mongo';
import { addLog } from '@fastgpt/service/common/system/log';
/* pg 中的数据搬到 mongo dataset.datas 中,并做映射 */
async function handler(req: NextApiRequest, res: NextApiResponse) {
await authCert({ req, authRoot: true });
// 重命名 dataset.trainigns -> dataset_trainings
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'dataset.trainings' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('dataset.trainings');
const targetCol = connectionMongo.connection.db.collection('dataset_trainings');
if ((await targetCol.countDocuments()) > 0) {
console.log(
'dataset_trainings 中有数据,无法自动将 dataset.trainings 迁移到 dataset_trainings请手动操作'
);
} else {
await sourceCol.rename('dataset_trainings', { dropTarget: true });
console.log('success rename dataset.trainings -> dataset_trainings');
}
}
} catch (error) {
console.log('error rename dataset.trainings -> dataset_trainings', error);
}
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'dataset.collections' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('dataset.collections');
const targetCol = connectionMongo.connection.db.collection('dataset_collections');
if ((await targetCol.countDocuments()) > 0) {
console.log(
'dataset_collections 中有数据,无法自动将 dataset.collections 迁移到 dataset_collections请手动操作'
);
} else {
await sourceCol.rename('dataset_collections', { dropTarget: true });
console.log('success rename dataset.collections -> dataset_collections');
}
}
} catch (error) {
console.log('error rename dataset.collections -> dataset_collections', error);
}
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'dataset.datas' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('dataset.datas');
const targetCol = connectionMongo.connection.db.collection('dataset_datas');
if ((await targetCol.countDocuments()) > 0) {
console.log(
'dataset_datas 中有数据,无法自动将 dataset.datas 迁移到 dataset_datas请手动操作'
);
} else {
await sourceCol.rename('dataset_datas', { dropTarget: true });
console.log('success rename dataset.datas -> dataset_datas');
}
}
} catch (error) {
console.log('error rename dataset.datas -> dataset_datas', error);
}
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'app.versions' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('app.versions');
const targetCol = connectionMongo.connection.db.collection('app_versions');
if ((await targetCol.countDocuments()) > 0) {
console.log(
'app_versions 中有数据,无法自动将 app.versions 迁移到 app_versions请手动操作'
);
} else {
await sourceCol.rename('app_versions', { dropTarget: true });
console.log('success rename app.versions -> app_versions');
}
}
} catch (error) {
console.log('error rename app.versions -> app_versions', error);
}
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'buffer.rawtexts' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('buffer.rawtexts');
const targetCol = connectionMongo.connection.db.collection('buffer_rawtexts');
if ((await targetCol.countDocuments()) > 0) {
console.log(
'buffer_rawtexts 中有数据,无法自动将 buffer.rawtexts 迁移到 buffer_rawtexts请手动操作'
);
} else {
await sourceCol.rename('buffer_rawtexts', { dropTarget: true });
console.log('success rename buffer.rawtexts -> buffer_rawtexts');
}
}
} catch (error) {
console.log('error rename buffer.rawtext -> buffer_rawtext', error);
}
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'buffer.tts' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('buffer.tts');
const targetCol = connectionMongo.connection.db.collection('buffer_tts');
if ((await targetCol.countDocuments()) > 0) {
console.log('buffer_tts 中有数据,无法自动将 buffer.tts 迁移到 buffer_tts请手动操作');
} else {
await sourceCol.rename('buffer_tts', { dropTarget: true });
console.log('success rename buffer.tts -> buffer_tts');
}
}
} catch (error) {
console.log('error rename buffer.tts -> buffer_tts', error);
}
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'team.members' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('team.members');
await sourceCol.rename('team_members', { dropTarget: true });
console.log('success rename team.members -> team_members');
}
} catch (error) {
console.log('error rename team.members -> team_members', error);
}
try {
const collections = await connectionMongo.connection.db
.listCollections({ name: 'team.tags' })
.toArray();
if (collections.length > 0) {
const sourceCol = connectionMongo.connection.db.collection('team.tags');
const targetCol = connectionMongo.connection.db.collection('team_tags');
if ((await targetCol.countDocuments()) > 0) {
console.log('team_tags 中有数据,无法自动将 team.tags 迁移到 team_tags请手动操作');
} else {
await sourceCol.rename('team_tags', { dropTarget: true });
console.log('success rename team.tags -> team_tags');
}
}
} catch (error) {
console.log('error rename team.tags -> team_tags', error);
}
jsonRes(res, {
message: 'success'
});
}
export default NextAPI(handler);

View File

@@ -0,0 +1,39 @@
import type { ApiRequestProps, ApiResponseType } from '@fastgpt/service/type/next';
import { NextAPI } from '@/service/middle/entry';
import { authDataset } from '@fastgpt/service/support/permission/auth/dataset';
import { MongoDatasetData } from '@fastgpt/service/core/dataset/data/schema';
import { MongoDatasetTraining } from '@fastgpt/service/core/dataset/training/schema';
type Props = {};
export type getDatasetTrainingQueueResponse = {
rebuildingCount: number;
trainingCount: number;
};
async function handler(
req: ApiRequestProps<any, { datasetId: string }>,
res: ApiResponseType<any>
): Promise<getDatasetTrainingQueueResponse> {
const { datasetId } = req.query;
const { teamId } = await authDataset({
req,
authToken: true,
authApiKey: true,
datasetId,
per: 'r'
});
const [rebuildingCount, trainingCount] = await Promise.all([
MongoDatasetData.countDocuments({ teamId, datasetId, rebuilding: true }),
MongoDatasetTraining.countDocuments({ teamId, datasetId })
]);
return {
rebuildingCount,
trainingCount
};
}
export default NextAPI(handler);

View File

@@ -0,0 +1,133 @@
import { NextAPI } from '@/service/middle/entry';
import { authDataset } from '@fastgpt/service/support/permission/auth/dataset';
import { mongoSessionRun } from '@fastgpt/service/common/mongo/sessionRun';
import { MongoDataset } from '@fastgpt/service/core/dataset/schema';
import { MongoDatasetData } from '@fastgpt/service/core/dataset/data/schema';
import { MongoDatasetTraining } from '@fastgpt/service/core/dataset/training/schema';
import { createTrainingUsage } from '@fastgpt/service/support/wallet/usage/controller';
import { UsageSourceEnum } from '@fastgpt/global/support/wallet/usage/constants';
import { getLLMModel, getVectorModel } from '@fastgpt/service/core/ai/model';
import { TrainingModeEnum } from '@fastgpt/global/core/dataset/constants';
import { ApiRequestProps, ApiResponseType } from '@fastgpt/service/type/next';
export type rebuildEmbeddingBody = {
datasetId: string;
vectorModel: string;
};
export type Response = {};
async function handler(
req: ApiRequestProps<rebuildEmbeddingBody>,
res: ApiResponseType<any>
): Promise<Response> {
const { datasetId, vectorModel } = req.body;
const { teamId, tmbId, dataset } = await authDataset({
req,
authToken: true,
authApiKey: true,
datasetId,
per: 'owner'
});
// check vector model
if (!vectorModel || dataset.vectorModel === vectorModel) {
return Promise.reject('vectorModel 不合法');
}
// check rebuilding or training
const [rebuilding, training] = await Promise.all([
MongoDatasetData.findOne({ teamId, datasetId, rebuilding: true }),
MongoDatasetTraining.findOne({ teamId, datasetId })
]);
if (rebuilding || training) {
return Promise.reject('数据集正在训练或者重建中,请稍后再试');
}
const { billId } = await createTrainingUsage({
teamId,
tmbId,
appName: '切换索引模型',
billSource: UsageSourceEnum.training,
vectorModel: getVectorModel(dataset.vectorModel)?.name,
agentModel: getLLMModel(dataset.agentModel)?.name
});
// update vector model and dataset.data rebuild field
await mongoSessionRun(async (session) => {
await MongoDataset.findByIdAndUpdate(
datasetId,
{
vectorModel
},
{ session }
);
await MongoDatasetData.updateMany(
{
teamId,
datasetId
},
{
$set: {
rebuilding: true
}
},
{
session
}
);
});
// get 10 init dataset.data
const arr = new Array(10).fill(0);
for await (const _ of arr) {
await mongoSessionRun(async (session) => {
const data = await MongoDatasetData.findOneAndUpdate(
{
teamId,
datasetId,
rebuilding: true
},
{
$unset: {
rebuilding: null
},
updateTime: new Date()
},
{
session
}
).select({
_id: 1,
collectionId: 1
});
if (data) {
await MongoDatasetTraining.create(
[
{
teamId,
tmbId,
datasetId,
collectionId: data.collectionId,
billId,
mode: TrainingModeEnum.chunk,
model: vectorModel,
q: '1',
dataId: data._id
}
],
{
session
}
);
}
});
}
return {};
}
export default NextAPI(handler);

View File

@@ -16,25 +16,47 @@ import PermissionRadio from '@/components/support/permission/Radio';
import { useSystemStore } from '@/web/common/system/useSystemStore';
import { useRequest } from '@fastgpt/web/hooks/useRequest';
import { MongoImageTypeEnum } from '@fastgpt/global/common/file/image/constants';
import MySelect from '@fastgpt/web/components/common/MySelect';
import AIModelSelector from '@/components/Select/AIModelSelector';
import { postRebuildEmbedding } from '@/web/core/dataset/api';
import { useI18n } from '@/web/context/I18n';
import type { VectorModelItemType } from '@fastgpt/global/core/ai/model.d';
import { useContextSelector } from 'use-context-selector';
import { DatasetPageContext } from '@/web/core/dataset/context/datasetPageContext';
import MyDivider from '@fastgpt/web/components/common/MyDivider/index';
const Info = ({ datasetId }: { datasetId: string }) => {
const { t } = useTranslation();
const { datasetDetail, loadDatasets, updateDataset } = useDatasetStore();
const { getValues, setValue, register, handleSubmit } = useForm<DatasetItemType>({
const { datasetT } = useI18n();
const { datasetDetail, loadDatasetDetail, loadDatasets, updateDataset } = useDatasetStore();
const rebuildingCount = useContextSelector(DatasetPageContext, (v) => v.rebuildingCount);
const trainingCount = useContextSelector(DatasetPageContext, (v) => v.trainingCount);
const refetchDatasetTraining = useContextSelector(
DatasetPageContext,
(v) => v.refetchDatasetTraining
);
const { setValue, register, handleSubmit, watch } = useForm<DatasetItemType>({
defaultValues: datasetDetail
});
const avatar = watch('avatar');
const vectorModel = watch('vectorModel');
const agentModel = watch('agentModel');
const permission = watch('permission');
const { datasetModelList, vectorModelList } = useSystemStore();
const router = useRouter();
const [refresh, setRefresh] = useState(false);
const { openConfirm, ConfirmModal } = useConfirm({
const { openConfirm: onOpenConfirmDel, ConfirmModal: ConfirmDelModal } = useConfirm({
content: t('core.dataset.Delete Confirm'),
type: 'delete'
});
const { openConfirm: onOpenConfirmRebuild, ConfirmModal: ConfirmRebuildModal } = useConfirm({
title: t('common.confirm.Common Tip'),
content: datasetT('Confirm to rebuild embedding tip'),
type: 'delete'
});
const { File, onOpen: onOpenSelectFile } = useSelectFile({
fileType: '.jpg,.png',
@@ -81,13 +103,27 @@ const Info = ({ datasetId }: { datasetId: string }) => {
onSuccess(src: string | null) {
if (src) {
setValue('avatar', src);
setRefresh((state) => !state);
}
},
errorToast: t('common.avatar.Select Failed')
});
const btnLoading = useMemo(() => isDeleting || isSaving, [isDeleting, isSaving]);
const { mutate: onRebuilding, isLoading: isRebuilding } = useRequest({
mutationFn: (vectorModel: VectorModelItemType) => {
return postRebuildEmbedding({
datasetId,
vectorModel: vectorModel.model
});
},
onSuccess() {
refetchDatasetTraining();
loadDatasetDetail(datasetId, true);
},
successToast: datasetT('Rebuild embedding start tip'),
errorToast: t('common.Update Failed')
});
const btnLoading = isSelecting || isDeleting || isSaving || isRebuilding;
return (
<Box py={5} px={[5, 10]}>
@@ -97,6 +133,62 @@ const Info = ({ datasetId }: { datasetId: string }) => {
</Box>
<Box flex={1}>{datasetDetail._id}</Box>
</Flex>
<Flex mt={8} w={'100%'} alignItems={'center'} flexWrap={'wrap'}>
<Box flex={['0 0 90px', '0 0 160px']} w={0}>
{t('core.ai.model.Vector Model')}
</Box>
<Box flex={[1, '0 0 300px']}>
<AIModelSelector
w={'100%'}
value={vectorModel.model}
disableTip={
rebuildingCount > 0 || trainingCount > 0
? datasetT('The knowledge base has indexes that are being trained or being rebuilt')
: undefined
}
list={vectorModelList.map((item) => ({
label: item.name,
value: item.model
}))}
onchange={(e) => {
const vectorModel = vectorModelList.find((item) => item.model === e);
if (!vectorModel) return;
onOpenConfirmRebuild(() => {
setValue('vectorModel', vectorModel);
onRebuilding(vectorModel);
})();
}}
/>
</Box>
</Flex>
<Flex mt={8} w={'100%'} alignItems={'center'}>
<Box flex={['0 0 90px', '0 0 160px']} w={0}>
{t('core.Max Token')}
</Box>
<Box flex={[1, '0 0 300px']}>{vectorModel.maxToken}</Box>
</Flex>
<Flex mt={6} alignItems={'center'} flexWrap={'wrap'}>
<Box flex={['0 0 90px', '0 0 160px']} w={0}>
{t('core.ai.model.Dataset Agent Model')}
</Box>
<Box flex={[1, '0 0 300px']}>
<AIModelSelector
w={'100%'}
value={agentModel.model}
list={datasetModelList.map((item) => ({
label: item.name,
value: item.model
}))}
onchange={(e) => {
const agentModel = datasetModelList.find((item) => item.model === e);
if (!agentModel) return;
setValue('agentModel', agentModel);
}}
/>
</Box>
</Flex>
<MyDivider my={4} h={'2px'} maxW={'500px'} />
<Flex mt={5} w={'100%'} alignItems={'center'}>
<Box flex={['0 0 90px', '0 0 160px']} w={0}>
@@ -106,7 +198,7 @@ const Info = ({ datasetId }: { datasetId: string }) => {
<MyTooltip label={t('common.avatar.Select Avatar')}>
<Avatar
m={'auto'}
src={getValues('avatar')}
src={avatar}
w={['32px', '40px']}
h={['32px', '40px']}
cursor={'pointer'}
@@ -121,40 +213,6 @@ const Info = ({ datasetId }: { datasetId: string }) => {
</Box>
<Input flex={[1, '0 0 300px']} maxLength={30} {...register('name')} />
</Flex>
<Flex mt={8} w={'100%'} alignItems={'center'}>
<Box flex={['0 0 90px', '0 0 160px']} w={0}>
{t('core.ai.model.Vector Model')}
</Box>
<Box flex={[1, '0 0 300px']}>{getValues('vectorModel').name}</Box>
</Flex>
<Flex mt={8} w={'100%'} alignItems={'center'}>
<Box flex={['0 0 90px', '0 0 160px']} w={0}>
{t('core.Max Token')}
</Box>
<Box flex={[1, '0 0 300px']}>{getValues('vectorModel').maxToken}</Box>
</Flex>
<Flex mt={6} alignItems={'center'}>
<Box flex={['0 0 90px', '0 0 160px']} w={0}>
{t('core.ai.model.Dataset Agent Model')}
</Box>
<Box flex={[1, '0 0 300px']}>
<AIModelSelector
w={'100%'}
value={getValues('agentModel').model}
list={datasetModelList.map((item) => ({
label: item.name,
value: item.model
}))}
onchange={(e) => {
const agentModel = datasetModelList.find((item) => item.model === e);
if (!agentModel) return;
setValue('agentModel', agentModel);
setRefresh((state) => !state);
}}
/>
</Box>
</Flex>
<Flex mt={8} alignItems={'center'} w={'100%'}>
<Box flex={['0 0 90px', '0 0 160px']}>{t('common.Intro')}</Box>
<Textarea flex={[1, '0 0 300px']} {...register('intro')} placeholder={t('common.Intro')} />
@@ -166,10 +224,9 @@ const Info = ({ datasetId }: { datasetId: string }) => {
</Box>
<Box>
<PermissionRadio
value={getValues('permission')}
value={permission}
onChange={(e) => {
setValue('permission', e);
setRefresh(!refresh);
}}
/>
</Box>
@@ -193,12 +250,14 @@ const Info = ({ datasetId }: { datasetId: string }) => {
aria-label={''}
variant={'whiteDanger'}
size={'smSquare'}
onClick={openConfirm(onclickDelete)}
onClick={onOpenConfirmDel(onclickDelete)}
/>
)}
</Flex>
<File onSelect={onSelectFile} />
<ConfirmModal />
<ConfirmDelModal />
<ConfirmRebuildModal countDown={10} />
</Box>
);
};

View File

@@ -0,0 +1,215 @@
import React, { useCallback } from 'react';
import { useTranslation } from 'next-i18next';
import { useDatasetStore } from '@/web/core/dataset/store/dataset';
import { useUserStore } from '@/web/support/user/useUserStore';
import { Box, Flex, IconButton, useTheme, Progress } from '@chakra-ui/react';
import { useSystemStore } from '@/web/common/system/useSystemStore';
import Avatar from '@/components/Avatar';
import {
DatasetStatusEnum,
DatasetTypeEnum,
DatasetTypeMap
} from '@fastgpt/global/core/dataset/constants';
import DatasetTypeTag from '@/components/core/dataset/DatasetTypeTag';
import MyTooltip from '@fastgpt/web/components/common/MyTooltip';
import MyIcon from '@fastgpt/web/components/common/Icon';
import { useConfirm } from '@fastgpt/web/hooks/useConfirm';
import SideTabs from '@/components/SideTabs';
import { useRequest } from '@fastgpt/web/hooks/useRequest';
import { useRouter } from 'next/router';
import Tabs from '@/components/Tabs';
import { useContextSelector } from 'use-context-selector';
import { DatasetPageContext } from '@/web/core/dataset/context/datasetPageContext';
import { useI18n } from '@/web/context/I18n';
export enum TabEnum {
dataCard = 'dataCard',
collectionCard = 'collectionCard',
test = 'test',
info = 'info',
import = 'import'
}
const Slider = ({ currentTab }: { currentTab: TabEnum }) => {
const theme = useTheme();
const { t } = useTranslation();
const { datasetT } = useI18n();
const router = useRouter();
const query = router.query;
const { datasetDetail, startWebsiteSync } = useDatasetStore();
const { userInfo } = useUserStore();
const { isPc, setLoading } = useSystemStore();
const vectorTrainingMap = useContextSelector(DatasetPageContext, (v) => v.vectorTrainingMap);
const agentTrainingMap = useContextSelector(DatasetPageContext, (v) => v.agentTrainingMap);
const rebuildingCount = useContextSelector(DatasetPageContext, (v) => v.rebuildingCount);
const tabList = [
{
label: t('core.dataset.Collection'),
id: TabEnum.collectionCard,
icon: 'common/overviewLight'
},
{ label: t('core.dataset.test.Search Test'), id: TabEnum.test, icon: 'kbTest' },
...(userInfo?.team.canWrite && datasetDetail.isOwner
? [{ label: t('common.Config'), id: TabEnum.info, icon: 'common/settingLight' }]
: [])
];
const setCurrentTab = useCallback(
(tab: TabEnum) => {
router.replace({
query: {
...query,
currentTab: tab
}
});
},
[query, router]
);
const { ConfirmModal: ConfirmSyncModal, openConfirm: openConfirmSync } = useConfirm({
type: 'common'
});
const { mutate: onUpdateDatasetWebsiteConfig } = useRequest({
mutationFn: () => {
setLoading(true);
return startWebsiteSync();
},
onSettled() {
setLoading(false);
},
errorToast: t('common.Update Failed')
});
return (
<>
{isPc ? (
<Flex
flexDirection={'column'}
py={4}
h={'100%'}
flex={'0 0 200px'}
borderRight={theme.borders.base}
>
<Box px={4} borderBottom={'1px'} borderColor={'myGray.200'} pb={4} mb={4}>
<Flex mb={4} alignItems={'center'}>
<Avatar src={datasetDetail.avatar} w={'34px'} borderRadius={'md'} />
<Box ml={2}>
<Box fontWeight={'bold'}>{datasetDetail.name}</Box>
</Box>
</Flex>
{DatasetTypeMap[datasetDetail.type] && (
<Flex alignItems={'center'} pl={2} justifyContent={'space-between'}>
<DatasetTypeTag type={datasetDetail.type} />
{datasetDetail.type === DatasetTypeEnum.websiteDataset &&
datasetDetail.status === DatasetStatusEnum.active && (
<MyTooltip label={t('core.dataset.website.Start Sync')}>
<MyIcon
mt={1}
name={'common/refreshLight'}
w={'12px'}
color={'myGray.500'}
cursor={'pointer'}
onClick={() =>
openConfirmSync(
onUpdateDatasetWebsiteConfig,
undefined,
t('core.dataset.website.Confirm Create Tips')
)()
}
/>
</MyTooltip>
)}
</Flex>
)}
</Box>
<SideTabs
px={4}
flex={1}
mx={'auto'}
w={'100%'}
list={tabList}
activeId={currentTab}
onChange={(e: any) => {
setCurrentTab(e);
}}
/>
<Box px={4}>
{rebuildingCount > 0 && (
<Box mb={3}>
<Box fontSize={'sm'}>
{datasetT('Rebuilding index count', { count: rebuildingCount })}
</Box>
</Box>
)}
<Box mb={3}>
<Box fontSize={'sm'}>
{t('core.dataset.training.Agent queue')}({agentTrainingMap.tip})
</Box>
<Progress
value={100}
size={'xs'}
colorScheme={agentTrainingMap.colorSchema}
borderRadius={'10px'}
isAnimated
hasStripe
/>
</Box>
<Box mb={3}>
<Box fontSize={'sm'}>
{t('core.dataset.training.Vector queue')}({vectorTrainingMap.tip})
</Box>
<Progress
value={100}
size={'xs'}
colorScheme={vectorTrainingMap.colorSchema}
borderRadius={'10px'}
isAnimated
hasStripe
/>
</Box>
</Box>
<Flex
alignItems={'center'}
cursor={'pointer'}
py={2}
px={3}
borderRadius={'md'}
_hover={{ bg: 'myGray.100' }}
onClick={() => router.replace('/dataset/list')}
>
<IconButton
mr={3}
icon={<MyIcon name={'common/backFill'} w={'18px'} color={'primary.500'} />}
bg={'white'}
boxShadow={'1px 1px 9px rgba(0,0,0,0.15)'}
size={'smSquare'}
borderRadius={'50%'}
aria-label={''}
/>
{t('core.dataset.All Dataset')}
</Flex>
</Flex>
) : (
<Box mb={3}>
<Tabs
m={'auto'}
w={'260px'}
size={isPc ? 'md' : 'sm'}
list={tabList.map((item) => ({
id: item.id,
label: item.label
}))}
activeId={currentTab}
onChange={(e: any) => setCurrentTab(e)}
/>
</Box>
)}
<ConfirmSyncModal />
</>
);
};
export default Slider;

View File

@@ -1,33 +1,22 @@
import React, { useCallback, useMemo } from 'react';
import { useRouter } from 'next/router';
import { Box, Flex, IconButton, useTheme, Progress } from '@chakra-ui/react';
import { Box } from '@chakra-ui/react';
import { useToast } from '@fastgpt/web/hooks/useToast';
import { useQuery } from '@tanstack/react-query';
import { getErrText } from '@fastgpt/global/common/error/utils';
import { useSystemStore } from '@/web/common/system/useSystemStore';
import Tabs from '@/components/Tabs';
import dynamic from 'next/dynamic';
import MyIcon from '@fastgpt/web/components/common/Icon';
import SideTabs from '@/components/SideTabs';
import PageContainer from '@/components/PageContainer';
import Avatar from '@/components/Avatar';
import { serviceSideProps } from '@/web/common/utils/i18n';
import { useTranslation } from 'next-i18next';
import { getTrainingQueueLen } from '@/web/core/dataset/api';
import MyTooltip from '@/components/MyTooltip';
import CollectionCard from './components/CollectionCard';
import { useDatasetStore } from '@/web/core/dataset/store/dataset';
import { useUserStore } from '@/web/support/user/useUserStore';
import {
DatasetStatusEnum,
DatasetTypeEnum,
DatasetTypeMap
} from '@fastgpt/global/core/dataset/constants';
import { useConfirm } from '@fastgpt/web/hooks/useConfirm';
import { useRequest } from '@fastgpt/web/hooks/useRequest';
import DatasetTypeTag from '@/components/core/dataset/DatasetTypeTag';
import Head from 'next/head';
import Slider from './components/Slider';
import MyBox from '@fastgpt/web/components/common/MyBox';
import { DatasetPageContextProvider } from '@/web/core/dataset/context/datasetPageContext';
const DataCard = dynamic(() => import('./components/DataCard'));
const Test = dynamic(() => import('./components/Test'));
@@ -42,48 +31,16 @@ export enum TabEnum {
import = 'import'
}
const Detail = ({ datasetId, currentTab }: { datasetId: string; currentTab: `${TabEnum}` }) => {
const theme = useTheme();
const Detail = ({ datasetId, currentTab }: { datasetId: string; currentTab: TabEnum }) => {
const { t } = useTranslation();
const { toast } = useToast();
const router = useRouter();
const { isPc } = useSystemStore();
const { datasetDetail, loadDatasetDetail, startWebsiteSync } = useDatasetStore();
const { userInfo } = useUserStore();
const tabList = [
{
label: t('core.dataset.Collection'),
id: TabEnum.collectionCard,
icon: 'common/overviewLight'
},
{ label: t('core.dataset.test.Search Test'), id: TabEnum.test, icon: 'kbTest' },
...(userInfo?.team.canWrite && datasetDetail.isOwner
? [{ label: t('common.Config'), id: TabEnum.info, icon: 'common/settingLight' }]
: [])
];
const { datasetDetail, loadDatasetDetail } = useDatasetStore();
const { ConfirmModal: ConfirmSyncModal, openConfirm: openConfirmSync } = useConfirm({
type: 'common'
});
const { mutate: onUpdateDatasetWebsiteConfig, isLoading: isUpdating } = useRequest({
mutationFn: () => startWebsiteSync(),
errorToast: t('common.Update Failed')
});
const setCurrentTab = useCallback(
(tab: `${TabEnum}`) => {
router.replace({
query: {
datasetId,
currentTab: tab
}
});
},
[datasetId, router]
);
useQuery([datasetId], () => loadDatasetDetail(datasetId), {
onError(err: any) {
router.replace(`/dataset/list`);
@@ -94,197 +51,33 @@ const Detail = ({ datasetId, currentTab }: { datasetId: string; currentTab: `${T
}
});
const { data: { vectorTrainingCount = 0, agentTrainingCount = 0 } = {} } = useQuery(
['getTrainingQueueLen'],
() =>
getTrainingQueueLen({
vectorModel: datasetDetail.vectorModel.model,
agentModel: datasetDetail.agentModel.model
}),
{
refetchInterval: 10000
}
);
const { vectorTrainingMap, agentTrainingMap } = useMemo(() => {
const vectorTrainingMap = (() => {
if (vectorTrainingCount < 1000)
return {
colorSchema: 'green',
tip: t('core.dataset.training.Leisure')
};
if (vectorTrainingCount < 10000)
return {
colorSchema: 'yellow',
tip: t('core.dataset.training.Waiting')
};
return {
colorSchema: 'red',
tip: t('core.dataset.training.Full')
};
})();
const agentTrainingMap = (() => {
if (agentTrainingCount < 100)
return {
colorSchema: 'green',
tip: t('core.dataset.training.Leisure')
};
if (agentTrainingCount < 1000)
return {
colorSchema: 'yellow',
tip: t('core.dataset.training.Waiting')
};
return {
colorSchema: 'red',
tip: t('core.dataset.training.Full')
};
})();
return {
vectorTrainingMap,
agentTrainingMap
};
}, [agentTrainingCount, t, vectorTrainingCount]);
return (
<>
<Head>
<title>{datasetDetail?.name}</title>
</Head>
<PageContainer>
<MyBox
isLoading={isUpdating}
display={'flex'}
flexDirection={['column', 'row']}
h={'100%'}
pt={[4, 0]}
>
{isPc ? (
<Flex
flexDirection={'column'}
py={4}
h={'100%'}
flex={'0 0 200px'}
borderRight={theme.borders.base}
>
<Box px={4} borderBottom={'1px'} borderColor={'myGray.200'} pb={4} mb={4}>
<Flex mb={4} alignItems={'center'}>
<Avatar src={datasetDetail.avatar} w={'34px'} borderRadius={'md'} />
<Box ml={2}>
<Box fontWeight={'bold'}>{datasetDetail.name}</Box>
</Box>
</Flex>
{DatasetTypeMap[datasetDetail.type] && (
<Flex alignItems={'center'} pl={2} justifyContent={'space-between'}>
<DatasetTypeTag type={datasetDetail.type} />
{datasetDetail.type === DatasetTypeEnum.websiteDataset &&
datasetDetail.status === DatasetStatusEnum.active && (
<MyTooltip label={t('core.dataset.website.Start Sync')}>
<MyIcon
mt={1}
name={'common/refreshLight'}
w={'12px'}
color={'myGray.500'}
cursor={'pointer'}
onClick={() =>
openConfirmSync(
onUpdateDatasetWebsiteConfig,
undefined,
t('core.dataset.website.Confirm Create Tips')
)()
}
/>
</MyTooltip>
)}
</Flex>
)}
</Box>
<SideTabs
px={4}
flex={1}
mx={'auto'}
w={'100%'}
list={tabList}
activeId={currentTab}
onChange={(e: any) => {
setCurrentTab(e);
}}
/>
<Box px={4}>
<Box mb={3}>
<Box fontSize={'sm'}>
{t('core.dataset.training.Agent queue')}({agentTrainingMap.tip})
</Box>
<Progress
value={100}
size={'xs'}
colorScheme={agentTrainingMap.colorSchema}
borderRadius={'10px'}
isAnimated
hasStripe
/>
</Box>
<Box mb={3}>
<Box fontSize={'sm'}>
{t('core.dataset.training.Vector queue')}({vectorTrainingMap.tip})
</Box>
<Progress
value={100}
size={'xs'}
colorScheme={vectorTrainingMap.colorSchema}
borderRadius={'10px'}
isAnimated
hasStripe
/>
</Box>
</Box>
<DatasetPageContextProvider
value={{
datasetId
}}
>
<PageContainer>
<MyBox display={'flex'} flexDirection={['column', 'row']} h={'100%'} pt={[4, 0]}>
<Slider currentTab={currentTab} />
<Flex
alignItems={'center'}
cursor={'pointer'}
py={2}
px={3}
borderRadius={'md'}
_hover={{ bg: 'myGray.100' }}
onClick={() => router.replace('/dataset/list')}
>
<IconButton
mr={3}
icon={<MyIcon name={'common/backFill'} w={'18px'} color={'primary.500'} />}
bg={'white'}
boxShadow={'1px 1px 9px rgba(0,0,0,0.15)'}
size={'smSquare'}
borderRadius={'50%'}
aria-label={''}
/>
{t('core.dataset.All Dataset')}
</Flex>
</Flex>
) : (
<Box mb={3}>
<Tabs
m={'auto'}
w={'260px'}
size={isPc ? 'md' : 'sm'}
list={tabList.map((item) => ({
id: item.id,
label: item.label
}))}
activeId={currentTab}
onChange={(e: any) => setCurrentTab(e)}
/>
</Box>
)}
{!!datasetDetail._id && (
<Box flex={'1 0 0'} pb={0}>
{currentTab === TabEnum.collectionCard && <CollectionCard />}
{currentTab === TabEnum.dataCard && <DataCard />}
{currentTab === TabEnum.test && <Test datasetId={datasetId} />}
{currentTab === TabEnum.info && <Info datasetId={datasetId} />}
{currentTab === TabEnum.import && <Import />}
</Box>
)}
</MyBox>
</PageContainer>
</DatasetPageContextProvider>
{!!datasetDetail._id && (
<Box flex={'1 0 0'} pb={0}>
{currentTab === TabEnum.collectionCard && <CollectionCard />}
{currentTab === TabEnum.dataCard && <DataCard />}
{currentTab === TabEnum.test && <Test datasetId={datasetId} />}
{currentTab === TabEnum.info && <Info datasetId={datasetId} />}
{currentTab === TabEnum.import && <Import />}
</Box>
)}
</MyBox>
</PageContainer>
<ConfirmSyncModal />
</>
);
@@ -295,7 +88,7 @@ export async function getServerSideProps(context: any) {
const datasetId = context?.query?.datasetId;
return {
props: { currentTab, datasetId, ...(await serviceSideProps(context, ['file'])) }
props: { currentTab, datasetId, ...(await serviceSideProps(context, ['dataset', 'file'])) }
};
}

View File

@@ -305,6 +305,42 @@ const Kb = () => {
</Box>
}
menuList={[
{
label: (
<Flex alignItems={'center'}>
<MyIcon name={'edit'} w={'14px'} mr={2} />
{t('Rename')}
</Flex>
),
onClick: () =>
onOpenTitleModal({
defaultVal: dataset.name,
onSuccess: (val) => {
if (val === dataset.name || !val) return;
updateDataset({ id: dataset._id, name: val });
}
})
},
{
label: (
<Flex alignItems={'center'}>
<MyIcon name={'common/file/move'} w={'14px'} mr={2} />
{t('Move')}
</Flex>
),
onClick: () => setMoveDataId(dataset._id)
},
{
label: (
<Flex alignItems={'center'}>
<MyIcon name={'export'} w={'14px'} mr={2} />
{t('Export')}
</Flex>
),
onClick: () => {
exportDataset(dataset);
}
},
...(dataset.permission === PermissionTypeEnum.private
? [
{
@@ -342,42 +378,6 @@ const Kb = () => {
}
}
]),
{
label: (
<Flex alignItems={'center'}>
<MyIcon name={'edit'} w={'14px'} mr={2} />
{t('Rename')}
</Flex>
),
onClick: () =>
onOpenTitleModal({
defaultVal: dataset.name,
onSuccess: (val) => {
if (val === dataset.name || !val) return;
updateDataset({ id: dataset._id, name: val });
}
})
},
{
label: (
<Flex alignItems={'center'}>
<MyIcon name={'common/file/move'} w={'14px'} mr={2} />
{t('Move')}
</Flex>
),
onClick: () => setMoveDataId(dataset._id)
},
{
label: (
<Flex alignItems={'center'}>
<MyIcon name={'export'} w={'14px'} mr={2} />
{t('Export')}
</Flex>
),
onClick: () => {
exportDataset(dataset);
}
},
{
label: (
<Flex alignItems={'center'}>