mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-21 03:35:36 +00:00
perf: isPc check;perf: dataset max token checker (#4872)
* perf: isPc check * perf: dataset max token checker * perf: dataset max token checker
This commit is contained in:
@@ -17,6 +17,8 @@ weight: 790
|
||||
1. LLM stream调用,默认超时调大。
|
||||
2. 部分确认交互优化。
|
||||
3. 纠正原先知识库的“表格数据集”名称,改成“备份导入”。同时支持知识库索引的导出和导入。
|
||||
4. 工作流知识库引用上限,如果工作流中没有相关 AI 节点,则交互模式改成纯手动输入,并且上限为 1000万。
|
||||
5. 语音输入,移动端判断逻辑,准确判断是否为手机,而不是小屏。
|
||||
|
||||
## 🐛 修复
|
||||
|
||||
|
@@ -60,5 +60,3 @@ export enum AppTemplateTypeEnum {
|
||||
// special type
|
||||
contribute = 'contribute'
|
||||
}
|
||||
|
||||
export const defaultDatasetMaxTokens = 16000;
|
||||
|
@@ -11,40 +11,6 @@ export const beforeUpdateAppFormat = <T extends AppSchema['modules'] | undefined
|
||||
nodes: T;
|
||||
isPlugin: boolean;
|
||||
}) => {
|
||||
if (nodes) {
|
||||
// Check dataset maxTokens
|
||||
if (isPlugin) {
|
||||
let maxTokens = 16000;
|
||||
|
||||
nodes.forEach((item) => {
|
||||
if (
|
||||
item.flowNodeType === FlowNodeTypeEnum.chatNode ||
|
||||
item.flowNodeType === FlowNodeTypeEnum.tools
|
||||
) {
|
||||
const model =
|
||||
item.inputs.find((item) => item.key === NodeInputKeyEnum.aiModel)?.value || '';
|
||||
const chatModel = getLLMModel(model);
|
||||
const quoteMaxToken = chatModel.quoteMaxToken || 16000;
|
||||
|
||||
maxTokens = Math.max(maxTokens, quoteMaxToken);
|
||||
}
|
||||
});
|
||||
|
||||
nodes.forEach((item) => {
|
||||
if (item.flowNodeType === FlowNodeTypeEnum.datasetSearchNode) {
|
||||
item.inputs.forEach((input) => {
|
||||
if (input.key === NodeInputKeyEnum.datasetMaxTokens) {
|
||||
const val = input.value as number;
|
||||
if (val > maxTokens) {
|
||||
input.value = maxTokens;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
nodes
|
||||
};
|
||||
|
@@ -18,10 +18,10 @@ export const getWebReqUrl = (url: string = '') => {
|
||||
};
|
||||
|
||||
export const isMobile = () => {
|
||||
// 服务端渲染时返回 false
|
||||
// SSR return false
|
||||
if (typeof window === 'undefined') return false;
|
||||
|
||||
// 1. 检查 User-Agent
|
||||
// 1. Check User-Agent
|
||||
const userAgent = navigator.userAgent.toLowerCase();
|
||||
const mobileKeywords = [
|
||||
'android',
|
||||
@@ -36,12 +36,12 @@ export const isMobile = () => {
|
||||
];
|
||||
const isMobileUA = mobileKeywords.some((keyword) => userAgent.includes(keyword));
|
||||
|
||||
// 2. 检查屏幕宽度
|
||||
// 2. Check screen width
|
||||
const isMobileWidth = window.innerWidth <= 900;
|
||||
|
||||
// 3. 检查是否支持触摸事件(排除触控屏PC)
|
||||
// 3. Check if touch events are supported (exclude touch screen PCs)
|
||||
const isTouchDevice = 'ontouchstart' in window || navigator.maxTouchPoints > 0;
|
||||
|
||||
// 综合判断:满足以下任一条件即视为移动端
|
||||
// If any of the following conditions are met, it is considered a mobile device
|
||||
return isMobileUA || (isMobileWidth && isTouchDevice);
|
||||
};
|
||||
|
@@ -25,11 +25,11 @@ import SelectAiModel from '@/components/Select/AIModelSelector';
|
||||
import QuestionTip from '@fastgpt/web/components/common/MyTooltip/QuestionTip';
|
||||
import FormLabel from '@fastgpt/web/components/common/MyBox/FormLabel';
|
||||
import MyTextarea from '@/components/common/Textarea/MyTextarea';
|
||||
import { defaultDatasetMaxTokens } from '@fastgpt/global/core/app/constants';
|
||||
import InputSlider from '@fastgpt/web/components/common/MySlider/InputSlider';
|
||||
import LeftRadio from '@fastgpt/web/components/common/Radio/LeftRadio';
|
||||
import { type AppDatasetSearchParamsType } from '@fastgpt/global/core/app/type';
|
||||
import MyIcon from '@fastgpt/web/components/common/Icon';
|
||||
import MyNumberInput from '@fastgpt/web/components/common/Input/NumberInput';
|
||||
|
||||
enum SearchSettingTabEnum {
|
||||
searchMode = 'searchMode',
|
||||
@@ -48,7 +48,7 @@ const DatasetParamsModal = ({
|
||||
datasetSearchUsingExtensionQuery,
|
||||
datasetSearchExtensionModel,
|
||||
datasetSearchExtensionBg,
|
||||
maxTokens = defaultDatasetMaxTokens,
|
||||
maxTokens,
|
||||
onClose,
|
||||
onSuccess
|
||||
}: AppDatasetSearchParamsType & {
|
||||
@@ -130,7 +130,7 @@ const DatasetParamsModal = ({
|
||||
|
||||
// 保证只有 80 左右个刻度。
|
||||
const maxTokenStep = useMemo(() => {
|
||||
if (maxTokens < 8000) return 80;
|
||||
if (!maxTokens || maxTokens < 8000) return 80;
|
||||
return Math.ceil(maxTokens / 80 / 100) * 100;
|
||||
}, [maxTokens]);
|
||||
|
||||
@@ -301,6 +301,7 @@ const DatasetParamsModal = ({
|
||||
<QuestionTip label={t('common:max_quote_tokens_tips')} />
|
||||
</Flex>
|
||||
<Box flex={'1 0 0'}>
|
||||
{maxTokens ? (
|
||||
<InputSlider
|
||||
min={100}
|
||||
max={maxTokens}
|
||||
@@ -311,6 +312,16 @@ const DatasetParamsModal = ({
|
||||
setRefresh(!refresh);
|
||||
}}
|
||||
/>
|
||||
) : (
|
||||
<MyNumberInput
|
||||
size={'sm'}
|
||||
min={100}
|
||||
max={1000000}
|
||||
step={100}
|
||||
register={register}
|
||||
name={NodeInputKeyEnum.datasetMaxTokens}
|
||||
/>
|
||||
)}
|
||||
</Box>
|
||||
</Box>
|
||||
)}
|
||||
|
@@ -214,7 +214,8 @@ const MobileVoiceInput = ({
|
||||
const VoiceInput = forwardRef<VoiceInputComponentRef, VoiceInputProps>(
|
||||
({ onSendMessage, resetInputVal }, ref) => {
|
||||
const { t } = useTranslation();
|
||||
const isPc = !isMobile();
|
||||
const isMobileDevice = isMobile();
|
||||
const { isPc } = useSystem();
|
||||
|
||||
const outLinkAuthData = useContextSelector(ChatBoxContext, (v) => v.outLinkAuthData);
|
||||
const appId = useContextSelector(ChatBoxContext, (v) => v.appId);
|
||||
@@ -265,10 +266,10 @@ const VoiceInput = forwardRef<VoiceInputComponentRef, VoiceInputProps>(
|
||||
return;
|
||||
}
|
||||
|
||||
if (isPc) {
|
||||
renderAudioGraphPc(analyser, canvas);
|
||||
} else {
|
||||
if (isMobileDevice) {
|
||||
renderAudioGraphMobile(analyser, canvas);
|
||||
} else {
|
||||
renderAudioGraphPc(analyser, canvas);
|
||||
}
|
||||
animationFrameId = window.requestAnimationFrame(renderCurve);
|
||||
};
|
||||
@@ -283,7 +284,7 @@ const VoiceInput = forwardRef<VoiceInputComponentRef, VoiceInputProps>(
|
||||
source.disconnect();
|
||||
analyser.disconnect();
|
||||
};
|
||||
}, [stream, canvasRef, renderAudioGraphPc, renderAudioGraphMobile, isPc]);
|
||||
}, [stream, canvasRef, renderAudioGraphPc, renderAudioGraphMobile, isMobileDevice]);
|
||||
|
||||
const onStartSpeak = useCallback(() => {
|
||||
const finishWhisperTranscription = (text: string) => {
|
||||
@@ -301,12 +302,12 @@ const VoiceInput = forwardRef<VoiceInputComponentRef, VoiceInputProps>(
|
||||
}, [autoTTSResponse, onSendMessage, resetInputVal, startSpeak, whisperConfig?.autoSend]);
|
||||
|
||||
const onSpeach = useCallback(() => {
|
||||
if (isPc) {
|
||||
onStartSpeak();
|
||||
} else {
|
||||
if (isMobileDevice) {
|
||||
setMobilePreSpeak(true);
|
||||
} else {
|
||||
onStartSpeak();
|
||||
}
|
||||
}, [isPc, onStartSpeak]);
|
||||
}, [isMobileDevice, onStartSpeak]);
|
||||
useImperativeHandle(ref, () => ({
|
||||
onSpeak: onSpeach
|
||||
}));
|
||||
@@ -328,13 +329,7 @@ const VoiceInput = forwardRef<VoiceInputComponentRef, VoiceInputProps>(
|
||||
borderRadius={isPc ? 'md' : ''}
|
||||
onContextMenu={(e) => e.preventDefault()}
|
||||
>
|
||||
{isPc ? (
|
||||
<PCVoiceInput
|
||||
speakingTimeString={speakingTimeString}
|
||||
stopSpeak={stopSpeak}
|
||||
canvasRef={canvasRef}
|
||||
/>
|
||||
) : (
|
||||
{isMobileDevice ? (
|
||||
<MobileVoiceInput
|
||||
isSpeaking={isSpeaking}
|
||||
onStartSpeak={onStartSpeak}
|
||||
@@ -342,6 +337,12 @@ const VoiceInput = forwardRef<VoiceInputComponentRef, VoiceInputProps>(
|
||||
stopSpeak={stopSpeak}
|
||||
canvasRef={canvasRef}
|
||||
/>
|
||||
) : (
|
||||
<PCVoiceInput
|
||||
speakingTimeString={speakingTimeString}
|
||||
stopSpeak={stopSpeak}
|
||||
canvasRef={canvasRef}
|
||||
/>
|
||||
)}
|
||||
|
||||
{isTransCription && (
|
||||
|
@@ -24,6 +24,8 @@ import FormLabel from '@fastgpt/web/components/common/MyBox/FormLabel';
|
||||
import ValueTypeLabel from './render/ValueTypeLabel';
|
||||
import MyIcon from '@fastgpt/web/components/common/Icon';
|
||||
import { getWebLLMModel } from '@/web/common/system/utils';
|
||||
import InputSlider from '@fastgpt/web/components/common/MySlider/InputSlider';
|
||||
import MyNumberInput from '@fastgpt/web/components/common/Input/NumberInput';
|
||||
|
||||
const NodeDatasetConcat = ({ data, selected }: NodeProps<FlowNodeItemType>) => {
|
||||
const { t } = useTranslation();
|
||||
@@ -32,34 +34,35 @@ const NodeDatasetConcat = ({ data, selected }: NodeProps<FlowNodeItemType>) => {
|
||||
|
||||
const CustomComponent = useMemo(() => {
|
||||
const quoteList = inputs.filter((item) => item.canEdit);
|
||||
const tokenLimit = (() => {
|
||||
let maxTokens = 16000;
|
||||
const maxTokens = (() => {
|
||||
let maxTokens = 0;
|
||||
|
||||
nodeList.forEach((item) => {
|
||||
if ([FlowNodeTypeEnum.chatNode, FlowNodeTypeEnum.tools].includes(item.flowNodeType)) {
|
||||
const model =
|
||||
item.inputs.find((item) => item.key === NodeInputKeyEnum.aiModel)?.value || '';
|
||||
const quoteMaxToken = getWebLLMModel(model)?.quoteMaxToken || 16000;
|
||||
const quoteMaxToken = getWebLLMModel(model)?.quoteMaxToken || 0;
|
||||
|
||||
maxTokens = Math.max(maxTokens, quoteMaxToken);
|
||||
}
|
||||
});
|
||||
|
||||
return maxTokens;
|
||||
return maxTokens ? maxTokens : undefined;
|
||||
})();
|
||||
|
||||
const maxTokenStep = (() => {
|
||||
if (!maxTokens || maxTokens < 8000) return 80;
|
||||
return Math.ceil(maxTokens / 80 / 100) * 100;
|
||||
})();
|
||||
|
||||
return {
|
||||
[NodeInputKeyEnum.datasetMaxTokens]: (item: FlowNodeInputItemType) => (
|
||||
<Box px={2}>
|
||||
<MySlider
|
||||
markList={[
|
||||
{ label: '100', value: 100 },
|
||||
{ label: tokenLimit, value: tokenLimit }
|
||||
]}
|
||||
width={'100%'}
|
||||
[NodeInputKeyEnum.datasetMaxTokens]: (item: FlowNodeInputItemType) =>
|
||||
maxTokens ? (
|
||||
<Box px={2} bg={'white'} py={2} border={'base'} borderRadius={'md'}>
|
||||
<InputSlider
|
||||
min={100}
|
||||
max={tokenLimit}
|
||||
step={50}
|
||||
max={maxTokens}
|
||||
step={maxTokenStep}
|
||||
value={item.value}
|
||||
onChange={(e) => {
|
||||
onChangeNode({
|
||||
@@ -74,6 +77,27 @@ const NodeDatasetConcat = ({ data, selected }: NodeProps<FlowNodeItemType>) => {
|
||||
}}
|
||||
/>
|
||||
</Box>
|
||||
) : (
|
||||
<MyNumberInput
|
||||
size={'sm'}
|
||||
min={100}
|
||||
max={1000000}
|
||||
step={100}
|
||||
value={item.value}
|
||||
name={NodeInputKeyEnum.datasetMaxTokens}
|
||||
bg={'white'}
|
||||
onChange={(e) => {
|
||||
onChangeNode({
|
||||
nodeId,
|
||||
type: 'updateInput',
|
||||
key: item.key,
|
||||
value: {
|
||||
...item,
|
||||
value: e
|
||||
}
|
||||
});
|
||||
}}
|
||||
/>
|
||||
),
|
||||
[NodeInputKeyEnum.datasetQuoteList]: (item: FlowNodeInputItemType) => {
|
||||
return (
|
||||
|
@@ -12,7 +12,6 @@ import SearchParamsTip from '@/components/core/dataset/SearchParamsTip';
|
||||
import { useContextSelector } from 'use-context-selector';
|
||||
import { WorkflowContext } from '@/pageComponents/app/detail/WorkflowComponents/context';
|
||||
import { getWebLLMModel } from '@/web/common/system/utils';
|
||||
import { defaultDatasetMaxTokens } from '@fastgpt/global/core/app/constants';
|
||||
import { type AppDatasetSearchParamsType } from '@fastgpt/global/core/app/type';
|
||||
|
||||
const SelectDatasetParam = ({ inputs = [], nodeId }: RenderInputProps) => {
|
||||
@@ -36,19 +35,19 @@ const SelectDatasetParam = ({ inputs = [], nodeId }: RenderInputProps) => {
|
||||
});
|
||||
|
||||
const tokenLimit = useMemo(() => {
|
||||
let maxTokens = defaultDatasetMaxTokens;
|
||||
let maxTokens = 0;
|
||||
|
||||
nodeList.forEach((item) => {
|
||||
if ([FlowNodeTypeEnum.chatNode, FlowNodeTypeEnum.tools].includes(item.flowNodeType)) {
|
||||
const model =
|
||||
item.inputs.find((item) => item.key === NodeInputKeyEnum.aiModel)?.value || '';
|
||||
const quoteMaxToken = getWebLLMModel(model)?.quoteMaxToken || defaultDatasetMaxTokens;
|
||||
const quoteMaxToken = getWebLLMModel(model)?.quoteMaxToken ?? 0;
|
||||
|
||||
maxTokens = Math.max(maxTokens, quoteMaxToken);
|
||||
}
|
||||
});
|
||||
|
||||
return maxTokens;
|
||||
return maxTokens ? maxTokens : undefined;
|
||||
}, [nodeList]);
|
||||
|
||||
const { isOpen, onOpen, onClose } = useDisclosure();
|
||||
|
Reference in New Issue
Block a user