New dpcs structure and dataset i18n (#551)

* perf: check balance

* md

* lock way

* i18n

* docs

* doc

* i18n

* update doc

* feat: one link sync

* feat: one link sync

* feat: one link sync

* feat: one link sync

* feat: one link sync

* feat: one link sync

* feat: one link sync
This commit is contained in:
Archer
2023-12-04 21:37:07 +08:00
committed by GitHub
parent c3ae38df8b
commit 62e87551ac
141 changed files with 961 additions and 469 deletions

View File

@@ -0,0 +1,9 @@
---
weight: 900
title: '本地模型使用'
description: 'FastGPT 对接本地模型'
icon: 'model_training'
draft: false
images: []
---
<!-- 900~950 -->

View File

@@ -0,0 +1,117 @@
---
title: '接入 ChatGLM2-m3e 模型'
description: ' 将 FastGPT 接入私有化模型 ChatGLM2和m3e-large'
icon: 'model_training'
draft: false
toc: true
weight: 930
---
## 前言
FastGPT 默认使用了 OpenAI 的 LLM 模型和向量模型,如果想要私有化部署的话,可以使用 ChatGLM2 和 m3e-large 模型。以下是由用户@不做了睡大觉 提供的接入方法。该镜像直接集成了 M3E-Large 和 ChatGLM2-6B 模型,可以直接使用。
## 部署镜像
+ 镜像名: `stawky/chatglm2-m3e:latest`
+ 国内镜像名: `registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/chatglm2-m3e:latest`
+ 端口号: 6006
```
# 设置安全凭证即oneapi中的渠道密钥
默认值sk-aaabbbcccdddeeefffggghhhiiijjjkkk
也可以通过环境变量引入sk-key。有关docker环境变量引入的方法请自寻教程此处不再赘述。
```
## 接入 [One API](/docs/development/one-api/)
为 chatglm2 和 m3e-large 各添加一个渠道,参数如下:
![](/imgs/model-m3e1.png)
这里我填入 m3e 作为向量模型chatglm2 作为语言模型
## 测试
curl 例子:
```bash
curl --location --request POST 'https://domain/v1/embeddings' \
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "m3e",
"input": ["laf是什么"]
}'
```
```bash
curl --location --request POST 'https://domain/v1/chat/completions' \
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "chatglm2",
"messages": [{"role": "user", "content": "Hello!"}]
}'
```
Authorization 为 sk-aaabbbcccdddeeefffggghhhiiijjjkkk。model 为刚刚在 One API 填写的自定义模型。
## 接入 FastGPT
修改 config.json 配置文件,在 ChatModels 中加入 chatglm2, 在 VectorModels 中加入 M3E 模型:
```json
"ChatModels": [
//其他对话模型
{
"model": "chatglm2",
"name": "chatglm2",
"maxToken": 8000,
"price": 0,
"quoteMaxToken": 4000,
"maxTemperature": 1.2,
"defaultSystemChatPrompt": ""
}
],
"VectorModels": [
{
"model": "text-embedding-ada-002",
"name": "Embedding-2",
"price": 0.2,
"defaultToken": 500,
"maxToken": 3000
},
{
"model": "m3e",
"name": "M3E测试使用",
"price": 0.1,
"defaultToken": 500,
"maxToken": 1800
}
],
```
## 测试使用
M3E 模型的使用方法如下:
1. 创建知识库时候选择 M3E 模型。
注意,一旦选择后,知识库将无法修改向量模型。
![](/imgs/model-m3e2.png)
2. 导入数据
3. 搜索测试
![](/imgs/model-m3e3.png)
4. 应用绑定知识库
注意,应用只能绑定同一个向量模型的知识库,不能跨模型绑定。并且,需要注意调整相似度,不同向量模型的相似度(距离)会有所区别,需要自行测试实验。
![](/imgs/model-m3e4.png)
chatglm2 模型的使用方法如下:
模型选择 chatglm2 即可

View File

@@ -0,0 +1,124 @@
---
title: '接入 ChatGLM2-6B'
description: ' 将 FastGPT 接入私有化模型 ChatGLM2-6B'
icon: 'model_training'
draft: false
toc: true
weight: 910
---
## 前言
FastGPT 允许你使用自己的 OpenAI API KEY 来快速调用 OpenAI 接口,目前集成了 GPT-3.5, GPT-4 和 embedding可构建自己的知识库。但考虑到数据安全的问题我们并不能将所有的数据都交付给云端大模型。
那么如何在 FastGPT 上接入私有化模型呢?本文就以清华的 ChatGLM2 为例,为各位讲解如何在 FastGPT 中接入私有化模型。
## ChatGLM2-6B 简介
ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,具体介绍可参阅 [ChatGLM2-6B 项目主页](https://github.com/THUDM/ChatGLM2-6B)。
{{% alert context="warning" %}}
注意ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。本教程只是介绍了一种用法,无权给予任何授权!
{{% /alert %}}
## 推荐配置
依据官方数据,同样是生成 8192 长度,量化等级为 FP16 要占用 12.8GB 显存、int8 为 8.1GB 显存、int4 为 5.1GB 显存,量化后会稍微影响性能,但不多。
因此推荐配置如下:
{{< table "table-hover table-striped-columns" >}}
| 类型 | 内存 | 显存 | 硬盘空间 | 启动命令 |
|------|---------|---------|----------|--------------------------|
| fp16 | >=16GB | >=16GB | >=25GB | python openai_api.py 16 |
| int8 | >=16GB | >=9GB | >=25GB | python openai_api.py 8 |
| int4 | >=16GB | >=6GB | >=25GB | python openai_api.py 4 |
{{< /table >}}
## 部署
### 环境要求
- Python 3.8.10
- CUDA 11.8
- 科学上网环境
### 源码部署
1. 根据上面的环境配置配置好环境,具体教程自行 GPT
2. 下载 [python 文件](https://github.com/labring/FastGPT/blob/main/files/models/ChatGLM2/openai_api.py)
3. 在命令行输入命令 `pip install -r requirments.txt`
4. 打开你需要启动的 py 文件,在代码的 `verify_token` 方法中配置 token这里的 token 只是加一层验证,防止接口被人盗用;
5. 执行命令 `python openai_api.py --model_name 16`。这里的数字根据上面的配置进行选择。
然后等待模型下载,直到模型加载完毕为止。如果出现报错先问 GPT。
启动成功后应该会显示如下地址:
![](/imgs/chatglm2.png)
> 这里的 `http://0.0.0.0:6006` 就是连接地址。
### docker 部署
**镜像和端口**
+ 镜像名: `stawky/chatglm2:latest`
+ 国内镜像名: `registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/chatglm2:latest`
+ 端口号: 6006
```
# 设置安全凭证即oneapi中的渠道密钥
默认值sk-aaabbbcccdddeeefffggghhhiiijjjkkk
也可以通过环境变量引入sk-key。有关docker环境变量引入的方法请自寻教程此处不再赘述。
```
## 接入 One API
为 chatglm2 添加一个渠道,参数如下:
![](/imgs/model-m3e1.png)
这里我填入 chatglm2 作为语言模型
## 测试
curl 例子:
```bash
curl --location --request POST 'https://domain/v1/chat/completions' \
--header 'Authorization: Bearer sk-aaabbbcccdddeeefffggghhhiiijjjkkk' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "chatglm2",
"messages": [{"role": "user", "content": "Hello!"}]
}'
```
Authorization 为 sk-aaabbbcccdddeeefffggghhhiiijjjkkk。model 为刚刚在 One API 填写的自定义模型。
## 接入 FastGPT
修改 config.json 配置文件,在 ChatModels 中加入 chatglm2 模型:
```json
"ChatModels": [
//已有模型
{
"model": "chatglm2",
"name": "chatglm2",
"maxContext": 4000,
"maxResponse": 4000,
"quoteMaxToken": 2000,
"maxTemperature": 1,
"vision": false,
"defaultSystemChatPrompt": ""
}
]
```
## 测试使用
chatglm2 模型的使用方法如下:
模型选择 chatglm2 即可

View File

@@ -0,0 +1,89 @@
---
title: '接入 M3E 向量模型'
description: ' 将 FastGPT 接入私有化模型 M3E'
icon: 'model_training'
draft: false
toc: true
weight: 920
---
## 前言
FastGPT 默认使用了 openai 的 embedding 向量模型,如果你想私有部署的话,可以使用 M3E 向量模型进行替换。M3E 向量模型属于小模型资源使用不高CPU 也可以运行。下面教程是基于 “睡大觉” 同学提供的一个的镜像。
## 部署镜像
镜像名: `stawky/m3e-large-api:latest`
国内镜像: `registry.cn-hangzhou.aliyuncs.com/fastgpt_docker/m3e-large-api:latest`
端口号: 6008
环境变量:
```
# 设置安全凭证即oneapi中的渠道密钥
默认值sk-aaabbbcccdddeeefffggghhhiiijjjkkk
也可以通过环境变量引入sk-key。有关docker环境变量引入的方法请自寻教程此处不再赘述。
```
## 接入 One API
添加一个渠道,参数如下:
![](/imgs/model-m3e1.png)
## 测试
curl 例子:
```bash
curl --location --request POST 'https://domain/v1/embeddings' \
--header 'Authorization: Bearer xxxx' \
--header 'Content-Type: application/json' \
--data-raw '{
"model": "m3e",
"input": ["laf是什么"]
}'
```
Authorization 为 sk-key。model 为刚刚在 One API 填写的自定义模型。
## 接入 FastGPT
修改 config.json 配置文件,在 VectorModels 中加入 M3E 模型:
```json
"VectorModels": [
{
"model": "text-embedding-ada-002",
"name": "Embedding-2",
"price": 0.2,
"defaultToken": 500,
"maxToken": 3000
},
{
"model": "m3e",
"name": "M3E测试使用",
"price": 0.1,
"defaultToken": 500,
"maxToken": 1800
}
]
```
## 测试使用
1. 创建知识库时候选择 M3E 模型。
注意,一旦选择后,知识库将无法修改向量模型。
![](/imgs/model-m3e2.png)
2. 导入数据
3. 搜索测试
![](/imgs/model-m3e3.png)
4. 应用绑定知识库
注意,应用只能绑定同一个向量模型的知识库,不能跨模型绑定。并且,需要注意调整相似度,不同向量模型的相似度(距离)会有所区别,需要自行测试实验。
![](/imgs/model-m3e4.png)