perf: completion dispatch

This commit is contained in:
archer
2023-07-23 14:07:59 +08:00
parent 8151350d9f
commit 6027a966d2
33 changed files with 1797 additions and 2181 deletions

View File

@@ -0,0 +1,103 @@
import { adaptChatItem_openAI } from '@/utils/plugin/openai';
import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatHistoryItemResType, ChatItemType } from '@/types/chat';
import { ChatRoleEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import type { ClassifyQuestionAgentItemType } from '@/types/app';
import { countModelPrice } from '@/service/events/pushBill';
export type CQProps = {
systemPrompt?: string;
history?: ChatItemType[];
userChatInput: string;
agents: ClassifyQuestionAgentItemType[];
};
export type CQResponse = {
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
[key: string]: any;
};
const moduleName = 'Classify Question';
const agentModel = 'gpt-3.5-turbo';
const agentFunName = 'agent_user_question';
const maxTokens = 2000;
/* request openai chat */
export const dispatchClassifyQuestion = async (props: Record<string, any>): Promise<CQResponse> => {
const { agents, systemPrompt, history = [], userChatInput } = props as CQProps;
const messages: ChatItemType[] = [
...(systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: systemPrompt
}
]
: []),
...history,
{
obj: ChatRoleEnum.Human,
value: userChatInput
}
];
const filterMessages = ChatContextFilter({
model: agentModel,
prompts: messages,
maxTokens
});
const adaptMessages = adaptChatItem_openAI({ messages: filterMessages, reserveId: false });
// function body
const agentFunction = {
name: agentFunName,
description: '判断用户问题的类型,并返回指定值',
parameters: {
type: 'object',
properties: {
type: {
type: 'string',
description: agents.map((item) => `${item.value},返回:'${item.key}'`).join(''),
enum: agents.map((item) => item.key)
}
},
required: ['type']
}
};
const chatAPI = getOpenAIApi();
const response = await chatAPI.createChatCompletion(
{
model: agentModel,
temperature: 0,
messages: [...adaptMessages],
function_call: { name: agentFunName },
functions: [agentFunction]
},
{
...axiosConfig()
}
);
const arg = JSON.parse(response.data.choices?.[0]?.message?.function_call?.arguments || '');
if (!arg.type) {
throw new Error('');
}
const tokens = response.data.usage?.total_tokens || 0;
const result = agents.find((item) => item.key === arg.type) || agents[0];
return {
[result.key]: 1,
[TaskResponseKeyEnum.responseData]: {
moduleName,
price: countModelPrice({ model: agentModel, tokens }),
model: agentModel,
tokens,
cqList: agents,
cqResult: result.value
}
};
};