mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-27 16:33:49 +00:00
add sensevoice & cosevoice (#2562)
Signed-off-by: EthanD <EthanD4869@gmail.com> Co-authored-by: EthanD <EthanD4869@gmail.com>
This commit is contained in:
BIN
python/sensevoice/app/iic/SenseVoiceSmall/.mdl
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/.mdl
Normal file
Binary file not shown.
BIN
python/sensevoice/app/iic/SenseVoiceSmall/.msc
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/.msc
Normal file
Binary file not shown.
1
python/sensevoice/app/iic/SenseVoiceSmall/.mv
Normal file
1
python/sensevoice/app/iic/SenseVoiceSmall/.mv
Normal file
@@ -0,0 +1 @@
|
||||
Revision:master,CreatedAt:1720157464
|
210
python/sensevoice/app/iic/SenseVoiceSmall/README.md
Normal file
210
python/sensevoice/app/iic/SenseVoiceSmall/README.md
Normal file
@@ -0,0 +1,210 @@
|
||||
---
|
||||
frameworks:
|
||||
- Pytorch
|
||||
license: Apache License 2.0
|
||||
tasks:
|
||||
- auto-speech-recognition
|
||||
|
||||
#model-type:
|
||||
##如 gpt、phi、llama、chatglm、baichuan 等
|
||||
#- gpt
|
||||
|
||||
#domain:
|
||||
##如 nlp、cv、audio、multi-modal
|
||||
#- nlp
|
||||
|
||||
#language:
|
||||
##语言代码列表 https://help.aliyun.com/document_detail/215387.html?spm=a2c4g.11186623.0.0.9f8d7467kni6Aa
|
||||
#- cn
|
||||
|
||||
#metrics:
|
||||
##如 CIDEr、Blue、ROUGE 等
|
||||
#- CIDEr
|
||||
|
||||
#tags:
|
||||
##各种自定义,包括 pretrained、fine-tuned、instruction-tuned、RL-tuned 等训练方法和其他
|
||||
#- pretrained
|
||||
|
||||
#tools:
|
||||
##如 vllm、fastchat、llamacpp、AdaSeq 等
|
||||
#- vllm
|
||||
---
|
||||
|
||||
# Highlights
|
||||
**SenseVoice**专注于高精度多语言语音识别、情感辨识和音频事件检测
|
||||
- **多语言识别:** 采用超过40万小时数据训练,支持超过50种语言,识别效果上优于Whisper模型。
|
||||
- **富文本识别:**
|
||||
- 具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。
|
||||
- 支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。
|
||||
- **高效推理:** SenseVoice-Small模型采用非自回归端到端框架,推理延迟极低,10s音频推理仅耗时70ms,15倍优于Whisper-Large。
|
||||
- **微调定制:** 具备便捷的微调脚本与策略,方便用户根据业务场景修复长尾样本问题。
|
||||
- **服务部署:** 具有完整的服务部署链路,支持多并发请求,支持客户端语言有,python、c++、html、java与c#等。
|
||||
|
||||
|
||||
## <strong>[SenseVoice开源项目介绍]()</strong>
|
||||
<strong>[SenseVoice]()</strong>开源模型是多语言音频理解模型,具有包括语音识别、语种识别、语音情感识别,声学事件检测能力。
|
||||
|
||||
[**github仓库**]()
|
||||
| [**最新动态**]()
|
||||
| [**环境安装**]()
|
||||
|
||||
# 模型结构图
|
||||
SenseVoice多语言音频理解模型,支持语音识别、语种识别、语音情感识别、声学事件检测、逆文本正则化等能力,采用工业级数十万小时的标注音频进行模型训练,保证了模型的通用识别效果。模型可以被应用于中文、粤语、英语、日语、韩语音频识别,并输出带有情感和事件的富文本转写结果。
|
||||
|
||||
<p align="center">
|
||||
<img src="fig/sensevoice.png" alt="SenseVoice模型结构" width="1500" />
|
||||
</p>
|
||||
|
||||
SenseVoice-Small是基于非自回归端到端框架模型,为了指定任务,我们在语音特征前添加四个嵌入作为输入传递给编码器:
|
||||
- LID:用于预测音频语种标签。
|
||||
- SER:用于预测音频情感标签。
|
||||
- AED:用于预测音频包含的事件标签。
|
||||
- ITN:用于指定识别输出文本是否进行逆文本正则化。
|
||||
|
||||
|
||||
# 用法
|
||||
|
||||
## 推理
|
||||
|
||||
### modelscope pipeline推理
|
||||
```python
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
inference_pipeline = pipeline(
|
||||
task=Tasks.auto_speech_recognition,
|
||||
model='iic/SenseVoiceSmall',
|
||||
model_revision="master")
|
||||
|
||||
rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav')
|
||||
print(rec_result)
|
||||
```
|
||||
|
||||
### 直接推理
|
||||
|
||||
```python
|
||||
from model import SenseVoiceSmall
|
||||
|
||||
model_dir = "iic/SenseVoiceSmall"
|
||||
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir)
|
||||
|
||||
|
||||
res = m.inference(
|
||||
data_in="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
|
||||
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
|
||||
use_itn=False,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
print(res)
|
||||
```
|
||||
|
||||
### 使用funasr推理
|
||||
|
||||
```python
|
||||
from funasr import AutoModel
|
||||
|
||||
model_dir = "iic/SenseVoiceSmall"
|
||||
input_file = (
|
||||
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav"
|
||||
)
|
||||
|
||||
model = AutoModel(model=model_dir,
|
||||
vad_model="fsmn-vad",
|
||||
vad_kwargs={"max_single_segment_time": 30000},
|
||||
trust_remote_code=True, device="cuda:0")
|
||||
|
||||
res = model.generate(
|
||||
input=input_file,
|
||||
cache={},
|
||||
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
|
||||
use_itn=False,
|
||||
batch_size_s=0,
|
||||
)
|
||||
|
||||
print(res)
|
||||
```
|
||||
|
||||
funasr版本已经集成了vad模型,支持任意时长音频输入,`batch_size_s`单位为秒。
|
||||
如果输入均为短音频,并且需要批量化推理,为了加快推理效率,可以移除vad模型,并设置`batch_size`
|
||||
|
||||
```python
|
||||
model = AutoModel(model=model_dir, trust_remote_code=True, device="cuda:0")
|
||||
|
||||
res = model.generate(
|
||||
input=input_file,
|
||||
cache={},
|
||||
language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
|
||||
use_itn=False,
|
||||
batch_size=64,
|
||||
)
|
||||
```
|
||||
|
||||
更多详细用法,请参考 [文档](https://github.com/modelscope/FunASR/blob/main/docs/tutorial/README.md)
|
||||
|
||||
## 模型下载
|
||||
|
||||
|
||||
SDK下载
|
||||
```bash
|
||||
#安装ModelScope
|
||||
pip install modelscope
|
||||
```
|
||||
```python
|
||||
#SDK模型下载
|
||||
from modelscope import snapshot_download
|
||||
model_dir = snapshot_download('iic/SenseVoiceSmall')
|
||||
```
|
||||
Git下载
|
||||
```
|
||||
#Git模型下载
|
||||
git clone https://www.modelscope.cn/iic/SenseVoiceSmall.git
|
||||
```
|
||||
|
||||
## 服务部署
|
||||
|
||||
Undo
|
||||
|
||||
# Performance
|
||||
|
||||
## 语音识别效果
|
||||
我们在开源基准数据集(包括 AISHELL-1、AISHELL-2、Wenetspeech、Librispeech和Common Voice)上比较了SenseVoice与Whisper的多语言语音识别性能和推理效率。在中文和粤语识别效果上,SenseVoice-Small模型具有明显的效果优势。
|
||||
|
||||
<p align="center">
|
||||
<img src="fig/asr_results.png" alt="SenseVoice模型在开源测试集上的表现" width="2500" />
|
||||
</p>
|
||||
|
||||
|
||||
|
||||
## 情感识别效果
|
||||
由于目前缺乏被广泛使用的情感识别测试指标和方法,我们在多个测试集的多种指标进行测试,并与近年来Benchmark上的多个结果进行了全面的对比。所选取的测试集同时包含中文/英文两种语言以及表演、影视剧、自然对话等多种风格的数据,在不进行目标数据微调的前提下,SenseVoice能够在测试数据上达到和超过目前最佳情感识别模型的效果。
|
||||
|
||||
<p align="center">
|
||||
<img src="fig/ser_table.png" alt="SenseVoice模型SER效果1" width="1500" />
|
||||
</p>
|
||||
|
||||
同时,我们还在测试集上对多个开源情感识别模型进行对比,结果表明,SenseVoice-Large模型可以在几乎所有数据上都达到了最佳效果,而SenseVoice-Small模型同样可以在多数数据集上取得超越其他开源模型的效果。
|
||||
|
||||
<p align="center">
|
||||
<img src="fig/ser_figure.png" alt="SenseVoice模型SER效果2" width="500" />
|
||||
</p>
|
||||
|
||||
## 事件检测效果
|
||||
|
||||
尽管SenseVoice只在语音数据上进行训练,它仍然可以作为事件检测模型进行单独使用。我们在环境音分类ESC-50数据集上与目前业内广泛使用的BEATS与PANN模型的效果进行了对比。SenseVoice模型能够在这些任务上取得较好的效果,但受限于训练数据与训练方式,其事件分类效果专业的事件检测模型相比仍然有一定的差距。
|
||||
|
||||
<p align="center">
|
||||
<img src="fig/aed_figure.png" alt="SenseVoice模型AED效果" width="500" />
|
||||
</p>
|
||||
|
||||
|
||||
|
||||
## 推理效率
|
||||
SenseVoice-Small模型采用非自回归端到端架构,推理延迟极低。在参数量与Whisper-Small模型相当的情况下,比Whisper-Small模型推理速度快7倍,比Whisper-Large模型快17倍。同时SenseVoice-small模型在音频时长增加的情况下,推理耗时也无明显增加。
|
||||
|
||||
|
||||
<p align="center">
|
||||
<img src="fig/inference.png" alt="SenseVoice模型的推理效率" width="1500" />
|
||||
</p>
|
||||
|
||||
<p style="color: lightgrey;">如果您是本模型的贡献者,我们邀请您根据<a href="https://modelscope.cn/docs/ModelScope%E6%A8%A1%E5%9E%8B%E6%8E%A5%E5%85%A5%E6%B5%81%E7%A8%8B%E6%A6%82%E8%A7%88" style="color: lightgrey; text-decoration: underline;">模型贡献文档</a>,及时完善模型卡片内容。</p>
|
8
python/sensevoice/app/iic/SenseVoiceSmall/am.mvn
Normal file
8
python/sensevoice/app/iic/SenseVoiceSmall/am.mvn
Normal file
File diff suppressed because one or more lines are too long
Binary file not shown.
97
python/sensevoice/app/iic/SenseVoiceSmall/config.yaml
Normal file
97
python/sensevoice/app/iic/SenseVoiceSmall/config.yaml
Normal file
@@ -0,0 +1,97 @@
|
||||
encoder: SenseVoiceEncoderSmall
|
||||
encoder_conf:
|
||||
output_size: 512
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 50
|
||||
tp_blocks: 20
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.1
|
||||
input_layer: pe
|
||||
pos_enc_class: SinusoidalPositionEncoder
|
||||
normalize_before: true
|
||||
kernel_size: 11
|
||||
sanm_shfit: 0
|
||||
selfattention_layer_type: sanm
|
||||
|
||||
|
||||
model: SenseVoiceSmall
|
||||
model_conf:
|
||||
length_normalized_loss: true
|
||||
sos: 1
|
||||
eos: 2
|
||||
ignore_id: -1
|
||||
|
||||
tokenizer: SentencepiecesTokenizer
|
||||
tokenizer_conf:
|
||||
bpemodel: null
|
||||
unk_symbol: <unk>
|
||||
split_with_space: true
|
||||
|
||||
frontend: WavFrontend
|
||||
frontend_conf:
|
||||
fs: 16000
|
||||
window: hamming
|
||||
n_mels: 80
|
||||
frame_length: 25
|
||||
frame_shift: 10
|
||||
lfr_m: 7
|
||||
lfr_n: 6
|
||||
cmvn_file: null
|
||||
|
||||
|
||||
dataset: SenseVoiceCTCDataset
|
||||
dataset_conf:
|
||||
index_ds: IndexDSJsonl
|
||||
batch_sampler: EspnetStyleBatchSampler
|
||||
data_split_num: 32
|
||||
batch_type: token
|
||||
batch_size: 14000
|
||||
max_token_length: 2000
|
||||
min_token_length: 60
|
||||
max_source_length: 2000
|
||||
min_source_length: 60
|
||||
max_target_length: 200
|
||||
min_target_length: 0
|
||||
shuffle: true
|
||||
num_workers: 4
|
||||
sos: ${model_conf.sos}
|
||||
eos: ${model_conf.eos}
|
||||
IndexDSJsonl: IndexDSJsonl
|
||||
retry: 20
|
||||
|
||||
train_conf:
|
||||
accum_grad: 1
|
||||
grad_clip: 5
|
||||
max_epoch: 20
|
||||
keep_nbest_models: 10
|
||||
avg_nbest_model: 10
|
||||
log_interval: 100
|
||||
resume: true
|
||||
validate_interval: 10000
|
||||
save_checkpoint_interval: 10000
|
||||
|
||||
optim: adamw
|
||||
optim_conf:
|
||||
lr: 0.00002
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
|
||||
specaug: SpecAugLFR
|
||||
specaug_conf:
|
||||
apply_time_warp: false
|
||||
time_warp_window: 5
|
||||
time_warp_mode: bicubic
|
||||
apply_freq_mask: true
|
||||
freq_mask_width_range:
|
||||
- 0
|
||||
- 30
|
||||
lfr_rate: 6
|
||||
num_freq_mask: 1
|
||||
apply_time_mask: true
|
||||
time_mask_width_range:
|
||||
- 0
|
||||
- 12
|
||||
num_time_mask: 1
|
14
python/sensevoice/app/iic/SenseVoiceSmall/configuration.json
Normal file
14
python/sensevoice/app/iic/SenseVoiceSmall/configuration.json
Normal file
@@ -0,0 +1,14 @@
|
||||
{
|
||||
"framework": "pytorch",
|
||||
"task" : "auto-speech-recognition",
|
||||
"model": {"type" : "funasr"},
|
||||
"pipeline": {"type":"funasr-pipeline"},
|
||||
"model_name_in_hub": {
|
||||
"ms":"",
|
||||
"hf":""},
|
||||
"file_path_metas": {
|
||||
"init_param":"model.pt",
|
||||
"config":"config.yaml",
|
||||
"tokenizer_conf": {"bpemodel": "chn_jpn_yue_eng_ko_spectok.bpe.model"},
|
||||
"frontend_conf":{"cmvn_file": "am.mvn"}}
|
||||
}
|
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/aed_figure.png
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/aed_figure.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 116 KiB |
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/asr_results.png
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/asr_results.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 238 KiB |
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/inference.png
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/inference.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 935 KiB |
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/sensevoice.png
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/sensevoice.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 880 KiB |
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/ser_figure.png
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/ser_figure.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 194 KiB |
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/ser_table.png
Normal file
BIN
python/sensevoice/app/iic/SenseVoiceSmall/fig/ser_table.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 318 KiB |
Reference in New Issue
Block a user