add sensevoice & cosevoice (#2562)

Signed-off-by: EthanD <EthanD4869@gmail.com>
Co-authored-by: EthanD <EthanD4869@gmail.com>
This commit is contained in:
EthanD4869
2024-09-05 13:36:11 +08:00
committed by GitHub
parent 3671e55001
commit 5ed89130ef
38 changed files with 2284 additions and 0 deletions

View File

@@ -0,0 +1,12 @@
FROM dockerhub.icu/pytorch/pytorch:2.1.0-cuda11.8-cudnn8-runtime
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /opt/CosyVoice
RUN chmod 777 /tmp && sed -i 's@//.*archive.ubuntu.com@//mirrors.ustc.edu.cn@g' /etc/apt/sources.list && apt-get update -y && apt-get -y install git unzip git-lfs
RUN git lfs install && git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
# here we use python==3.10 because we cannot find an image which have both python3.8 and torch2.0.1-cu118 installed
COPY ./requirements.txt CosyVoice
RUN cd CosyVoice && pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
RUN cd CosyVoice/runtime/python/grpc && python3 -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. cosyvoice.proto
COPY fastapi/server.py CosyVoice/runtime/python/fastapi/

View File

@@ -0,0 +1,78 @@
import argparse
import logging
import requests
def saveResponse(path, response):
# 以二进制写入模式打开文件
with open(path, 'wb') as file:
# 将响应的二进制内容写入文件
file.write(response.content)
def main():
api = args.api_base
if args.mode == 'sft':
url = api + "/api/inference/sft"
payload={
'tts': args.tts_text,
'role': args.spk_id
}
response = requests.request("POST", url, data=payload)
saveResponse(args.tts_wav, response)
elif args.mode == 'zero_shot':
url = api + "/api/inference/zero-shot"
payload={
'tts': args.tts_text,
'prompt': args.prompt_text
}
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
response = requests.request("POST", url, data=payload, files=files)
saveResponse(args.tts_wav, response)
elif args.mode == 'cross_lingual':
url = api + "/api/inference/cross-lingual"
payload={
'tts': args.tts_text,
}
files=[('audio', ('prompt_audio.wav', open(args.prompt_wav,'rb'), 'application/octet-stream'))]
response = requests.request("POST", url, data=payload, files=files)
saveResponse(args.tts_wav, response)
else:
url = api + "/api/inference/instruct"
payload = {
'tts': args.tts_text,
'role': args.spk_id,
'instruct': args.instruct_text
}
response = requests.request("POST", url, data=payload)
saveResponse(args.tts_wav, response)
logging.info("Response save to {}", args.tts_wav)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--api_base',
type=str,
default='http://127.0.0.1:50000')
parser.add_argument('--mode',
default='sft',
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
help='request mode')
parser.add_argument('--tts_text',
type=str,
default='你好,我是通义千问语音合成大模型,请问有什么可以帮您的吗?')
parser.add_argument('--spk_id',
type=str,
default='中文男')
parser.add_argument('--prompt_text',
type=str,
default='希望你以后能够做的比我还好呦。')
parser.add_argument('--prompt_wav',
type=str,
default='../../../zero_shot_prompt.wav')
parser.add_argument('--instruct_text',
type=str,
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
parser.add_argument('--tts_wav',
type=str,
default='loushiming.mp3')
args = parser.parse_args()
prompt_sr, target_sr = 16000, 22050
main()

View File

@@ -0,0 +1,136 @@
# Set inference model
# export MODEL_DIR=pretrained_models/CosyVoice-300M-Instruct
# For development
# fastapi dev --port 6006 fastapi_server.py
# For production deployment
# fastapi run --port 6006 fastapi_server.py
import os
import sys
import io,time
from fastapi import FastAPI, Request, Response, File, UploadFile, Form, Body
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware #引入 CORS中间件模块
from contextlib import asynccontextmanager
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../../..'.format(ROOT_DIR))
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
from cosyvoice.cli.cosyvoice import CosyVoice
from cosyvoice.utils.file_utils import load_wav
import numpy as np
import torch
import torchaudio
import logging
from pydantic import BaseModel
logging.getLogger('matplotlib').setLevel(logging.WARNING)
class LaunchFailed(Exception):
pass
@asynccontextmanager
async def lifespan(app: FastAPI):
model_dir = os.getenv("MODEL_DIR", "pretrained_models/CosyVoice-300M-SFT")
if model_dir:
logging.info("MODEL_DIR is {}", model_dir)
app.cosyvoice = CosyVoice(model_dir)
# sft usage
logging.info("Avaliable speakers {}", app.cosyvoice.list_avaliable_spks())
else:
raise LaunchFailed("MODEL_DIR environment must set")
yield
app = FastAPI(lifespan=lifespan)
#设置允许访问的域名
origins = ["*"] #"*",即为所有,也可以改为允许的特定ip。
app.add_middleware(
CORSMiddleware,
allow_origins=origins, #设置允许的origins来源
allow_credentials=True,
allow_methods=["*"], # 设置允许跨域的http方法比如 get、post、put等。
allow_headers=["*"]) #允许跨域的headers可以用来鉴别来源等作用。
def buildResponse(output):
buffer = io.BytesIO()
torchaudio.save(buffer, output, 22050, format="mp3")
buffer.seek(0)
return Response(content=buffer.read(-1), media_type="audio/mpeg")
@app.post("/api/inference/sft")
@app.get("/api/inference/sft")
async def sft(tts: str = Form(), role: str = Form()):
start = time.process_time()
output = app.cosyvoice.inference_sft(tts, role)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
class SpeechRequest(BaseModel):
model: str
input: str
voice: str
@app.post("/v1/audio/speech")
async def sft(request: Request, speech_request: SpeechRequest):
# 解析请求体中的JSON数据
data = speech_request.dict()
start = time.process_time()
output = app.cosyvoice.inference_sft(data['input'], data['voice'])
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.post("/api/inference/zero-shot")
async def zeroShot(tts: str = Form(), prompt: str = Form(), audio: UploadFile = File()):
start = time.process_time()
prompt_speech = load_wav(audio.file, 16000)
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
output = app.cosyvoice.inference_zero_shot(tts, prompt, prompt_speech_16k)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.post("/api/inference/cross-lingual")
async def crossLingual(tts: str = Form(), audio: UploadFile = File()):
start = time.process_time()
prompt_speech = load_wav(audio.file, 16000)
prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
output = app.cosyvoice.inference_cross_lingual(tts, prompt_speech_16k)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.post("/api/inference/instruct")
@app.get("/api/inference/instruct")
async def instruct(tts: str = Form(), role: str = Form(), instruct: str = Form()):
start = time.process_time()
output = app.cosyvoice.inference_instruct(tts, role, instruct)
end = time.process_time()
logging.info("infer time is {} seconds", end-start)
return buildResponse(output['tts_speech'])
@app.get("/api/roles")
async def roles():
return {"roles": app.cosyvoice.list_avaliable_spks()}
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<!DOCTYPE html>
<html lang=zh-cn>
<head>
<meta charset=utf-8>
<title>Api information</title>
</head>
<body>
Get the supported tones from the Roles API first, then enter the tones and textual content in the TTS API for synthesis. <a href='./docs'>Documents of API</a>
</body>
</html>
"""

View File

@@ -0,0 +1,102 @@
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../../..'.format(ROOT_DIR))
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
import logging
import argparse
import torchaudio
import cosyvoice_pb2
import cosyvoice_pb2_grpc
import grpc
import torch
import numpy as np
from cosyvoice.utils.file_utils import load_wav
def main():
with grpc.insecure_channel("{}:{}".format(args.host, args.port)) as channel:
stub = cosyvoice_pb2_grpc.CosyVoiceStub(channel)
request = cosyvoice_pb2.Request()
if args.mode == 'sft':
logging.info('send sft request')
sft_request = cosyvoice_pb2.sftRequest()
sft_request.spk_id = args.spk_id
sft_request.tts_text = args.tts_text
request.sft_request.CopyFrom(sft_request)
elif args.mode == 'zero_shot':
logging.info('send zero_shot request')
zero_shot_request = cosyvoice_pb2.zeroshotRequest()
zero_shot_request.tts_text = args.tts_text
zero_shot_request.prompt_text = args.prompt_text
prompt_speech = load_wav(args.prompt_wav, 16000)
zero_shot_request.prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
request.zero_shot_request.CopyFrom(zero_shot_request)
elif args.mode == 'cross_lingual':
logging.info('send cross_lingual request')
cross_lingual_request = cosyvoice_pb2.crosslingualRequest()
cross_lingual_request.tts_text = args.tts_text
prompt_speech = load_wav(args.prompt_wav, 16000)
cross_lingual_request.prompt_audio = (prompt_speech.numpy() * (2**15)).astype(np.int16).tobytes()
request.cross_lingual_request.CopyFrom(cross_lingual_request)
else:
logging.info('send instruct request')
instruct_request = cosyvoice_pb2.instructRequest()
instruct_request.tts_text = args.tts_text
instruct_request.spk_id = args.spk_id
instruct_request.instruct_text = args.instruct_text
request.instruct_request.CopyFrom(instruct_request)
response = stub.Inference(request)
logging.info('save response to {}'.format(args.tts_wav))
tts_speech = torch.from_numpy(np.array(np.frombuffer(response.tts_audio, dtype=np.int16))).unsqueeze(dim=0)
torchaudio.save(args.tts_wav, tts_speech, target_sr)
logging.info('get response')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--host',
type=str,
default='0.0.0.0')
parser.add_argument('--port',
type=int,
default='50000')
parser.add_argument('--mode',
default='sft',
choices=['sft', 'zero_shot', 'cross_lingual', 'instruct'],
help='request mode')
parser.add_argument('--tts_text',
type=str,
default='你好,我是通义千问语音合成大模型,请问有什么可以帮您的吗?')
parser.add_argument('--spk_id',
type=str,
default='中文女')
parser.add_argument('--prompt_text',
type=str,
default='希望你以后能够做的比我还好呦。')
parser.add_argument('--prompt_wav',
type=str,
default='../../../zero_shot_prompt.wav')
parser.add_argument('--instruct_text',
type=str,
default='Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')
parser.add_argument('--tts_wav',
type=str,
default='demo.wav')
args = parser.parse_args()
prompt_sr, target_sr = 16000, 22050
main()

View File

@@ -0,0 +1,43 @@
syntax = "proto3";
package cosyvoice;
option go_package = "protos/";
service CosyVoice{
rpc Inference(Request) returns (Response) {}
}
message Request{
oneof RequestPayload {
sftRequest sft_request = 1;
zeroshotRequest zero_shot_request = 2;
crosslingualRequest cross_lingual_request = 3;
instructRequest instruct_request = 4;
}
}
message sftRequest{
string spk_id = 1;
string tts_text = 2;
}
message zeroshotRequest{
string tts_text = 1;
string prompt_text = 2;
bytes prompt_audio = 3;
}
message crosslingualRequest{
string tts_text = 1;
bytes prompt_audio = 2;
}
message instructRequest{
string tts_text = 1;
string spk_id = 2;
string instruct_text = 3;
}
message Response{
bytes tts_audio = 1;
}

View File

@@ -0,0 +1,83 @@
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/../../..'.format(ROOT_DIR))
sys.path.append('{}/../../../third_party/Matcha-TTS'.format(ROOT_DIR))
from concurrent import futures
import argparse
import cosyvoice_pb2
import cosyvoice_pb2_grpc
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
import grpc
import torch
import numpy as np
from cosyvoice.cli.cosyvoice import CosyVoice
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
def __init__(self, args):
self.cosyvoice = CosyVoice(args.model_dir)
logging.info('grpc service initialized')
def Inference(self, request, context):
if request.HasField('sft_request'):
logging.info('get sft inference request')
model_output = self.cosyvoice.inference_sft(request.sft_request.tts_text, request.sft_request.spk_id)
elif request.HasField('zero_shot_request'):
logging.info('get zero_shot inference request')
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.zero_shot_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
model_output = self.cosyvoice.inference_zero_shot(request.zero_shot_request.tts_text, request.zero_shot_request.prompt_text, prompt_speech_16k)
elif request.HasField('cross_lingual_request'):
logging.info('get cross_lingual inference request')
prompt_speech_16k = torch.from_numpy(np.array(np.frombuffer(request.cross_lingual_request.prompt_audio, dtype=np.int16))).unsqueeze(dim=0)
prompt_speech_16k = prompt_speech_16k.float() / (2**15)
model_output = self.cosyvoice.inference_cross_lingual(request.cross_lingual_request.tts_text, prompt_speech_16k)
else:
logging.info('get instruct inference request')
model_output = self.cosyvoice.inference_instruct(request.instruct_request.tts_text, request.instruct_request.spk_id, request.instruct_request.instruct_text)
logging.info('send inference response')
response = cosyvoice_pb2.Response()
response.tts_audio = (model_output['tts_speech'].numpy() * (2 ** 15)).astype(np.int16).tobytes()
return response
def main():
grpcServer = grpc.server(futures.ThreadPoolExecutor(max_workers=args.max_conc), maximum_concurrent_rpcs=args.max_conc)
cosyvoice_pb2_grpc.add_CosyVoiceServicer_to_server(CosyVoiceServiceImpl(args), grpcServer)
grpcServer.add_insecure_port('0.0.0.0:{}'.format(args.port))
grpcServer.start()
logging.info("server listening on 0.0.0.0:{}".format(args.port))
grpcServer.wait_for_termination()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port',
type=int,
default=50000)
parser.add_argument('--max_conc',
type=int,
default=4)
parser.add_argument('--model_dir',
type=str,
default='iic/CosyVoice-300M',
help='local path or modelscope repo id')
args = parser.parse_args()
main()

View File

@@ -0,0 +1,29 @@
--extra-index-url https://download.pytorch.org/whl/cu118
conformer==0.3.2
deepspeed==0.14.2; sys_platform == 'linux'
diffusers==0.27.2
gdown==5.1.0
gradio==4.32.2
grpcio==1.57.0
grpcio-tools==1.57.0
hydra-core==1.3.2
HyperPyYAML==1.2.2
inflect==7.3.1
librosa==0.10.2
lightning==2.2.4
matplotlib==3.7.5
modelscope==1.15.0
networkx==3.1
omegaconf==2.3.0
onnxruntime-gpu; sys_platform == 'linux'
onnxruntime; sys_platform == 'darwin' or sys_platform == 'windows'
openai-whisper==20231117
protobuf==4.25
pydantic==2.7.0
rich==13.7.1
soundfile==0.12.1
tensorboard
wget==3.2
fastapi==0.111.0
fastapi-cli==0.0.4
WeTextProcessing==1.0.3