mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 05:12:39 +00:00
4.6.7 fix (#752)
This commit is contained in:
@@ -42,7 +42,6 @@
|
||||
"next": "13.5.2",
|
||||
"next-i18next": "^13.3.0",
|
||||
"nprogress": "^0.2.0",
|
||||
"papaparse": "^5.4.1",
|
||||
"react": "18.2.0",
|
||||
"react-day-picker": "^8.7.1",
|
||||
"react-dom": "18.2.0",
|
||||
@@ -66,7 +65,6 @@
|
||||
"@types/jsonwebtoken": "^9.0.3",
|
||||
"@types/lodash": "^4.14.191",
|
||||
"@types/node": "^20.8.5",
|
||||
"@types/papaparse": "^5.3.7",
|
||||
"@types/react": "18.2.0",
|
||||
"@types/react-dom": "18.2.0",
|
||||
"@types/react-syntax-highlighter": "^15.5.6",
|
||||
|
@@ -226,7 +226,7 @@
|
||||
"Chat test": "测试对话",
|
||||
"Max Token": "单条数据上限",
|
||||
"Start chat": "立即对话",
|
||||
"Total chars": "总字符数: {{total}}",
|
||||
"Total chars": "总字数: {{total}}",
|
||||
"Total tokens": "总 Tokens: {{total}}",
|
||||
"ai": {
|
||||
"Model": "AI 模型",
|
||||
@@ -541,8 +541,7 @@
|
||||
"success": "开始同步"
|
||||
}
|
||||
},
|
||||
"training": {
|
||||
}
|
||||
"training": {}
|
||||
},
|
||||
"data": {
|
||||
"Auxiliary Data": "辅助数据",
|
||||
|
@@ -17,7 +17,7 @@ const ButtonEdge = (props: EdgeProps) => {
|
||||
style = {}
|
||||
} = props;
|
||||
|
||||
const [labelX, labelY] = getBezierPath({
|
||||
const [, labelX, labelY] = getBezierPath({
|
||||
sourceX,
|
||||
sourceY,
|
||||
sourcePosition,
|
||||
|
@@ -8,6 +8,3 @@ import { DatasetCollectionSchemaType } from '@fastgpt/global/core/dataset/type';
|
||||
/* ======= collection =========== */
|
||||
|
||||
/* ==== data ===== */
|
||||
export type PushDataResponse = {
|
||||
insertLen: number;
|
||||
};
|
||||
|
@@ -27,13 +27,7 @@ export type CreateDatasetParams = {
|
||||
export type InsertOneDatasetDataProps = PushDatasetDataChunkProps & {
|
||||
collectionId: string;
|
||||
};
|
||||
export type PushDatasetDataProps = {
|
||||
collectionId: string;
|
||||
data: PushDatasetDataChunkProps[];
|
||||
trainingMode: `${TrainingModeEnum}`;
|
||||
prompt?: string;
|
||||
billId?: string;
|
||||
};
|
||||
|
||||
export type UpdateDatasetDataProps = {
|
||||
id: string;
|
||||
q?: string; // embedding content
|
||||
|
@@ -16,11 +16,15 @@ import { checkDatasetLimit } from '@fastgpt/service/support/permission/limit/dat
|
||||
import { predictDataLimitLength } from '@fastgpt/global/core/dataset/utils';
|
||||
import { pushDataToTrainingQueue } from '@/service/core/dataset/data/controller';
|
||||
import { hashStr } from '@fastgpt/global/common/string/tools';
|
||||
import { createTrainingBill } from '@fastgpt/service/support/wallet/bill/controller';
|
||||
import { BillSourceEnum } from '@fastgpt/global/support/wallet/bill/constants';
|
||||
import { getQAModel, getVectorModel } from '@/service/core/ai/model';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
await connectToDatabase();
|
||||
const {
|
||||
name,
|
||||
text,
|
||||
trainingType = TrainingModeEnum.chunk,
|
||||
chunkSize = 512,
|
||||
@@ -29,7 +33,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
...body
|
||||
} = req.body as TextCreateDatasetCollectionParams;
|
||||
|
||||
const { teamId, tmbId } = await authDataset({
|
||||
const { teamId, tmbId, dataset } = await authDataset({
|
||||
req,
|
||||
authToken: true,
|
||||
authApiKey: true,
|
||||
@@ -52,21 +56,32 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
insertLen: predictDataLimitLength(trainingType, chunks)
|
||||
});
|
||||
|
||||
// 3. create collection
|
||||
const collectionId = await createOneCollection({
|
||||
...body,
|
||||
teamId,
|
||||
tmbId,
|
||||
type: DatasetCollectionTypeEnum.virtual,
|
||||
// 3. create collection and training bill
|
||||
const [collectionId, { billId }] = await Promise.all([
|
||||
createOneCollection({
|
||||
...body,
|
||||
teamId,
|
||||
tmbId,
|
||||
type: DatasetCollectionTypeEnum.virtual,
|
||||
|
||||
trainingType,
|
||||
chunkSize,
|
||||
chunkSplitter,
|
||||
qaPrompt,
|
||||
name,
|
||||
trainingType,
|
||||
chunkSize,
|
||||
chunkSplitter,
|
||||
qaPrompt,
|
||||
|
||||
hashRawText: hashStr(text),
|
||||
rawTextLength: text.length
|
||||
});
|
||||
hashRawText: hashStr(text),
|
||||
rawTextLength: text.length
|
||||
}),
|
||||
createTrainingBill({
|
||||
teamId,
|
||||
tmbId,
|
||||
appName: name,
|
||||
billSource: BillSourceEnum.training,
|
||||
vectorModel: getVectorModel(dataset.vectorModel)?.name,
|
||||
agentModel: getQAModel(dataset.agentModel)?.name
|
||||
})
|
||||
]);
|
||||
|
||||
// 4. push chunks to training queue
|
||||
const insertResults = await pushDataToTrainingQueue({
|
||||
@@ -74,6 +89,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
tmbId,
|
||||
collectionId,
|
||||
trainingMode: trainingType,
|
||||
prompt: qaPrompt,
|
||||
billId,
|
||||
data: chunks.map((text, index) => ({
|
||||
q: text,
|
||||
chunkIndex: index
|
||||
@@ -90,3 +107,11 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
export const config = {
|
||||
api: {
|
||||
bodyParser: {
|
||||
sizeLimit: '10mb'
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@@ -3,8 +3,10 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@fastgpt/service/common/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { withNextCors } from '@fastgpt/service/common/middle/cors';
|
||||
import type { PushDataResponse } from '@/global/core/api/datasetRes.d';
|
||||
import type { PushDatasetDataProps } from '@/global/core/dataset/api.d';
|
||||
import type {
|
||||
PushDatasetDataProps,
|
||||
PushDatasetDataResponse
|
||||
} from '@fastgpt/global/core/dataset/api.d';
|
||||
import { authDatasetCollection } from '@fastgpt/service/support/permission/auth/dataset';
|
||||
import { checkDatasetLimit } from '@fastgpt/service/support/permission/limit/dataset';
|
||||
import { predictDataLimitLength } from '@fastgpt/global/core/dataset/utils';
|
||||
@@ -39,7 +41,7 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
|
||||
insertLen: predictDataLimitLength(collection.trainingType, data)
|
||||
});
|
||||
|
||||
jsonRes<PushDataResponse>(res, {
|
||||
jsonRes<PushDatasetDataResponse>(res, {
|
||||
data: await pushDataToTrainingQueue({
|
||||
...req.body,
|
||||
teamId,
|
||||
|
@@ -12,16 +12,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
const method = (req.method || 'POST') as Method;
|
||||
const { path = [], ...query } = req.query as any;
|
||||
|
||||
const url = `/${path?.join('/')}`;
|
||||
const url = `/${path?.join('/')}?${new URLSearchParams(query).toString()}`;
|
||||
|
||||
if (!url) {
|
||||
throw new Error('url is empty');
|
||||
}
|
||||
|
||||
const data = {
|
||||
...req.body,
|
||||
...query
|
||||
};
|
||||
const data = req.body || query;
|
||||
|
||||
const repose = await request(
|
||||
url,
|
||||
@@ -56,3 +53,12 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
export const config = {
|
||||
api: {
|
||||
bodyParser: {
|
||||
sizeLimit: '10mb'
|
||||
},
|
||||
responseLimit: '10mb'
|
||||
}
|
||||
};
|
||||
|
@@ -27,7 +27,7 @@ const Upload = dynamic(() => import('../commonProgress/Upload'));
|
||||
const PreviewRawText = dynamic(() => import('../components/PreviewRawText'));
|
||||
|
||||
type FileItemType = ImportSourceItemType & { file: File };
|
||||
const fileType = '.txt, .docx, .pdf, .md, .html';
|
||||
const fileType = '.txt, .docx, .csv, .pdf, .md, .html';
|
||||
const maxSelectFileCount = 1000;
|
||||
|
||||
const FileLocal = ({ activeStep, goToNext }: ImportDataComponentProps) => {
|
||||
|
@@ -14,7 +14,8 @@ import { useImportStore } from '../Provider';
|
||||
import { feConfigs } from '@/web/common/system/staticData';
|
||||
|
||||
import dynamic from 'next/dynamic';
|
||||
import { fileDownload, readCsvContent } from '@/web/common/file/utils';
|
||||
import { fileDownload } from '@/web/common/file/utils';
|
||||
import { readCsvContent } from '@fastgpt/web/common/file/read/csv';
|
||||
|
||||
const PreviewData = dynamic(() => import('../commonProgress/PreviewData'));
|
||||
const Upload = dynamic(() => import('../commonProgress/Upload'));
|
||||
@@ -56,7 +57,7 @@ const SelectFile = React.memo(function SelectFile({ goToNext }: { goToNext: () =
|
||||
{
|
||||
for await (const selectFile of files) {
|
||||
const { file, folderPath } = selectFile;
|
||||
const { header, data } = await readCsvContent(file);
|
||||
const { header, data } = await readCsvContent({ file });
|
||||
|
||||
const filterData: FileItemType['chunks'] = data
|
||||
.filter((item) => item[0])
|
||||
|
@@ -193,7 +193,10 @@ const InputDataModal = ({
|
||||
// not exactly same
|
||||
await putDatasetDataById({
|
||||
id: dataId,
|
||||
...e
|
||||
...e,
|
||||
indexes: e.indexes.map((index) =>
|
||||
index.defaultIndex ? getDefaultIndex({ q: e.q, a: e.a }) : index
|
||||
)
|
||||
});
|
||||
|
||||
return {
|
||||
|
@@ -35,7 +35,8 @@ import dynamic from 'next/dynamic';
|
||||
import { useForm } from 'react-hook-form';
|
||||
import MySelect from '@/components/Select';
|
||||
import { useSelectFile } from '@/web/common/file/hooks/useSelectFile';
|
||||
import { fileDownload, readCsvContent } from '@/web/common/file/utils';
|
||||
import { fileDownload } from '@/web/common/file/utils';
|
||||
import { readCsvContent } from '@fastgpt/web/common/file/read/csv';
|
||||
import { delay } from '@fastgpt/global/common/system/utils';
|
||||
import QuoteItem from '@/components/core/dataset/QuoteItem';
|
||||
|
||||
@@ -125,7 +126,7 @@ const Test = ({ datasetId }: { datasetId: string }) => {
|
||||
const { mutate: onFileTest, isLoading: fileTestIsLoading } = useRequest({
|
||||
mutationFn: async ({ searchParams }: FormType) => {
|
||||
if (!selectFile) return Promise.reject('File is not selected');
|
||||
const { data } = await readCsvContent(selectFile);
|
||||
const { data } = await readCsvContent({ file: selectFile });
|
||||
const testList = data.slice(0, 100);
|
||||
const results: SearchTestResponse[] = [];
|
||||
|
||||
|
@@ -3,6 +3,11 @@ import { generateQA } from '@/service/events/generateQA';
|
||||
import { generateVector } from '@/service/events/generateVector';
|
||||
import { setCron } from '@fastgpt/service/common/system/cron';
|
||||
|
||||
export const startCron = () => {
|
||||
setUpdateSystemConfigCron();
|
||||
setTrainingQueueCron();
|
||||
};
|
||||
|
||||
export const setUpdateSystemConfigCron = () => {
|
||||
setCron('*/5 * * * *', () => {
|
||||
initSystemConfig();
|
||||
@@ -11,7 +16,7 @@ export const setUpdateSystemConfigCron = () => {
|
||||
};
|
||||
|
||||
export const setTrainingQueueCron = () => {
|
||||
setCron('*/3 * * * *', () => {
|
||||
setCron('*/1 * * * *', () => {
|
||||
generateVector();
|
||||
generateQA();
|
||||
});
|
||||
|
@@ -9,13 +9,11 @@ import {
|
||||
recallFromVectorStore,
|
||||
updateDatasetDataVector
|
||||
} from '@fastgpt/service/common/vectorStore/controller';
|
||||
import { Types } from 'mongoose';
|
||||
import {
|
||||
DatasetDataIndexTypeEnum,
|
||||
DatasetSearchModeEnum,
|
||||
DatasetSearchModeMap,
|
||||
SearchScoreTypeEnum,
|
||||
TrainingModeEnum
|
||||
SearchScoreTypeEnum
|
||||
} from '@fastgpt/global/core/dataset/constants';
|
||||
import { getDefaultIndex } from '@fastgpt/global/core/dataset/utils';
|
||||
import { jiebaSplit } from '@/service/common/string/jieba';
|
||||
@@ -29,172 +27,26 @@ import {
|
||||
} from '@fastgpt/global/core/dataset/type';
|
||||
import { reRankRecall } from '../../ai/rerank';
|
||||
import { countPromptTokens } from '@fastgpt/global/common/string/tiktoken';
|
||||
import { hashStr, simpleText } from '@fastgpt/global/common/string/tools';
|
||||
import type { PushDatasetDataProps } from '@/global/core/dataset/api.d';
|
||||
import type { PushDataResponse } from '@/global/core/api/datasetRes';
|
||||
import { PushDatasetDataChunkProps } from '@fastgpt/global/core/dataset/api';
|
||||
import { MongoDatasetTraining } from '@fastgpt/service/core/dataset/training/schema';
|
||||
import { startQueue } from '@/service/utils/tools';
|
||||
import { getCollectionWithDataset } from '@fastgpt/service/core/dataset/controller';
|
||||
import { getQAModel, getVectorModel } from '../../ai/model';
|
||||
import { delay } from '@fastgpt/global/common/system/utils';
|
||||
import { hashStr } from '@fastgpt/global/common/string/tools';
|
||||
import type {
|
||||
PushDatasetDataProps,
|
||||
PushDatasetDataResponse
|
||||
} from '@fastgpt/global/core/dataset/api.d';
|
||||
import { pushDataListToTrainingQueue } from '@fastgpt/service/core/dataset/training/controller';
|
||||
|
||||
export async function pushDataToTrainingQueue({
|
||||
teamId,
|
||||
tmbId,
|
||||
collectionId,
|
||||
data,
|
||||
prompt,
|
||||
billId,
|
||||
trainingMode
|
||||
}: {
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
} & PushDatasetDataProps): Promise<PushDataResponse> {
|
||||
const checkModelValid = async ({ collectionId }: { collectionId: string }) => {
|
||||
const {
|
||||
datasetId: { _id: datasetId, vectorModel, agentModel }
|
||||
} = await getCollectionWithDataset(collectionId);
|
||||
|
||||
if (trainingMode === TrainingModeEnum.chunk) {
|
||||
if (!collectionId) return Promise.reject(`CollectionId is empty`);
|
||||
const vectorModelData = getVectorModel(vectorModel);
|
||||
if (!vectorModelData) {
|
||||
return Promise.reject(`Model ${vectorModel} is inValid`);
|
||||
}
|
||||
|
||||
return {
|
||||
datasetId,
|
||||
maxToken: vectorModelData.maxToken * 1.5,
|
||||
model: vectorModelData.model,
|
||||
weight: vectorModelData.weight
|
||||
};
|
||||
}
|
||||
|
||||
if (trainingMode === TrainingModeEnum.qa) {
|
||||
const qaModelData = getQAModel(agentModel);
|
||||
if (!qaModelData) {
|
||||
return Promise.reject(`Model ${agentModel} is inValid`);
|
||||
}
|
||||
return {
|
||||
datasetId,
|
||||
maxToken: qaModelData.maxContext * 0.8,
|
||||
model: qaModelData.model,
|
||||
weight: 0
|
||||
};
|
||||
}
|
||||
return Promise.reject(`Mode ${trainingMode} is inValid`);
|
||||
};
|
||||
|
||||
const { datasetId, model, maxToken, weight } = await checkModelValid({
|
||||
collectionId
|
||||
export async function pushDataToTrainingQueue(
|
||||
props: {
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
} & PushDatasetDataProps
|
||||
): Promise<PushDatasetDataResponse> {
|
||||
const result = await pushDataListToTrainingQueue({
|
||||
...props,
|
||||
vectorModelList: global.vectorModels,
|
||||
qaModelList: global.qaModels
|
||||
});
|
||||
|
||||
// format q and a, remove empty char
|
||||
data.forEach((item) => {
|
||||
item.q = simpleText(item.q);
|
||||
item.a = simpleText(item.a);
|
||||
|
||||
item.indexes = item.indexes
|
||||
?.map((index) => {
|
||||
return {
|
||||
...index,
|
||||
text: simpleText(index.text)
|
||||
};
|
||||
})
|
||||
.filter(Boolean);
|
||||
});
|
||||
|
||||
// filter repeat or equal content
|
||||
const set = new Set();
|
||||
const filterResult: Record<string, PushDatasetDataChunkProps[]> = {
|
||||
success: [],
|
||||
overToken: [],
|
||||
repeat: [],
|
||||
error: []
|
||||
};
|
||||
|
||||
data.forEach((item) => {
|
||||
if (!item.q) {
|
||||
filterResult.error.push(item);
|
||||
return;
|
||||
}
|
||||
|
||||
const text = item.q + item.a;
|
||||
|
||||
// count q token
|
||||
const token = countPromptTokens(item.q);
|
||||
|
||||
if (token > maxToken) {
|
||||
filterResult.overToken.push(item);
|
||||
return;
|
||||
}
|
||||
|
||||
if (set.has(text)) {
|
||||
console.log('repeat', item);
|
||||
filterResult.repeat.push(item);
|
||||
} else {
|
||||
filterResult.success.push(item);
|
||||
set.add(text);
|
||||
}
|
||||
});
|
||||
|
||||
// 插入记录
|
||||
const insertData = async (dataList: PushDatasetDataChunkProps[], retry = 3): Promise<number> => {
|
||||
try {
|
||||
const results = await MongoDatasetTraining.insertMany(
|
||||
dataList.map((item, i) => ({
|
||||
teamId,
|
||||
tmbId,
|
||||
datasetId,
|
||||
collectionId,
|
||||
billId,
|
||||
mode: trainingMode,
|
||||
prompt,
|
||||
model,
|
||||
q: item.q,
|
||||
a: item.a,
|
||||
chunkIndex: item.chunkIndex ?? i,
|
||||
weight: weight ?? 0,
|
||||
indexes: item.indexes
|
||||
}))
|
||||
);
|
||||
await delay(500);
|
||||
return results.length;
|
||||
} catch (error) {
|
||||
if (retry > 0) {
|
||||
await delay(1000);
|
||||
return insertData(dataList, retry - 1);
|
||||
}
|
||||
return Promise.reject(error);
|
||||
}
|
||||
};
|
||||
|
||||
let insertLen = 0;
|
||||
const chunkSize = 50;
|
||||
const chunkList = filterResult.success.reduce(
|
||||
(acc, cur) => {
|
||||
const lastChunk = acc[acc.length - 1];
|
||||
if (lastChunk.length < chunkSize) {
|
||||
lastChunk.push(cur);
|
||||
} else {
|
||||
acc.push([cur]);
|
||||
}
|
||||
return acc;
|
||||
},
|
||||
[[]] as PushDatasetDataChunkProps[][]
|
||||
);
|
||||
for await (const chunks of chunkList) {
|
||||
insertLen += await insertData(chunks);
|
||||
}
|
||||
|
||||
startQueue();
|
||||
delete filterResult.success;
|
||||
|
||||
return {
|
||||
insertLen,
|
||||
...filterResult
|
||||
};
|
||||
return result;
|
||||
}
|
||||
|
||||
/* insert data.
|
||||
@@ -341,6 +193,11 @@ export async function updateData2Dataset({
|
||||
text: qaStr
|
||||
}
|
||||
});
|
||||
} else {
|
||||
patchResult.push({
|
||||
type: 'unChange',
|
||||
index: item
|
||||
});
|
||||
}
|
||||
} else {
|
||||
// not in database, create
|
||||
@@ -379,6 +236,7 @@ export async function updateData2Dataset({
|
||||
model
|
||||
});
|
||||
item.index.dataId = result.insertId;
|
||||
|
||||
return result;
|
||||
}
|
||||
if (item.type === 'delete' && item.index.dataId) {
|
||||
@@ -397,13 +255,14 @@ export async function updateData2Dataset({
|
||||
);
|
||||
|
||||
const charsLength = result.reduce((acc, cur) => acc + cur.charsLength, 0);
|
||||
const newIndexes = patchResult.filter((item) => item.type !== 'delete').map((item) => item.index);
|
||||
|
||||
// update mongo other data
|
||||
mongoData.q = q || mongoData.q;
|
||||
mongoData.a = a ?? mongoData.a;
|
||||
mongoData.fullTextToken = jiebaSplit({ text: mongoData.q + mongoData.a });
|
||||
// @ts-ignore
|
||||
mongoData.indexes = indexes;
|
||||
mongoData.indexes = newIndexes;
|
||||
await mongoData.save();
|
||||
|
||||
return {
|
||||
|
@@ -7,7 +7,7 @@ import { createDefaultTeam } from '@fastgpt/service/support/user/team/controller
|
||||
import { exit } from 'process';
|
||||
import { initVectorStore } from '@fastgpt/service/common/vectorStore/controller';
|
||||
import { getInitConfig } from '@/pages/api/common/system/getInitData';
|
||||
import { setUpdateSystemConfigCron, setTrainingQueueCron } from './common/system/cron';
|
||||
import { startCron } from './common/system/cron';
|
||||
|
||||
/**
|
||||
* connect MongoDB and init data
|
||||
@@ -23,8 +23,7 @@ export function connectToDatabase(): Promise<void> {
|
||||
getInitConfig();
|
||||
|
||||
// cron
|
||||
setUpdateSystemConfigCron();
|
||||
setTrainingQueueCron();
|
||||
startCron();
|
||||
|
||||
initRootUser();
|
||||
}
|
||||
|
@@ -32,13 +32,24 @@ export const uploadFiles = ({
|
||||
});
|
||||
};
|
||||
|
||||
export const getUploadBase64ImgController = (props: CompressImgProps & UploadImgProps) =>
|
||||
compressBase64ImgAndUpload({
|
||||
maxW: 4000,
|
||||
maxH: 4000,
|
||||
maxSize: 1024 * 1024 * 5,
|
||||
...props
|
||||
});
|
||||
export const getUploadBase64ImgController = (
|
||||
props: CompressImgProps & UploadImgProps,
|
||||
retry = 3
|
||||
): Promise<string> => {
|
||||
try {
|
||||
return compressBase64ImgAndUpload({
|
||||
maxW: 4000,
|
||||
maxH: 4000,
|
||||
maxSize: 1024 * 1024 * 5,
|
||||
...props
|
||||
});
|
||||
} catch (error) {
|
||||
if (retry > 0) {
|
||||
return getUploadBase64ImgController(props, retry - 1);
|
||||
}
|
||||
return Promise.reject(error);
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* compress image. response base64
|
||||
|
@@ -1,29 +1,3 @@
|
||||
import Papa from 'papaparse';
|
||||
import { readFileRawText } from '@fastgpt/web/common/file/read/rawText';
|
||||
|
||||
/**
|
||||
* read csv to json
|
||||
* @response {
|
||||
* header: string[],
|
||||
* data: string[][]
|
||||
* }
|
||||
*/
|
||||
export const readCsvContent = async (file: File) => {
|
||||
try {
|
||||
const { rawText: textArr } = await readFileRawText(file);
|
||||
const csvArr = Papa.parse(textArr).data as string[][];
|
||||
if (csvArr.length === 0) {
|
||||
throw new Error('csv 解析失败');
|
||||
}
|
||||
return {
|
||||
header: csvArr.shift() as string[],
|
||||
data: csvArr.map((item) => item)
|
||||
};
|
||||
} catch (error) {
|
||||
return Promise.reject('解析 csv 文件失败');
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* file download by text
|
||||
*/
|
||||
|
@@ -19,12 +19,14 @@ import type {
|
||||
SearchTestResponse
|
||||
} from '@/global/core/dataset/api.d';
|
||||
import type {
|
||||
PushDatasetDataProps,
|
||||
UpdateDatasetDataProps,
|
||||
CreateDatasetParams,
|
||||
InsertOneDatasetDataProps
|
||||
} from '@/global/core/dataset/api.d';
|
||||
import type { PushDataResponse } from '@/global/core/api/datasetRes.d';
|
||||
import type {
|
||||
PushDatasetDataProps,
|
||||
PushDatasetDataResponse
|
||||
} from '@fastgpt/global/core/dataset/api.d';
|
||||
import type { DatasetCollectionItemType } from '@fastgpt/global/core/dataset/type';
|
||||
import {
|
||||
DatasetCollectionSyncResultEnum,
|
||||
@@ -97,7 +99,7 @@ export const getDatasetDataItemById = (id: string) =>
|
||||
* push data to training queue
|
||||
*/
|
||||
export const postChunks2Dataset = (data: PushDatasetDataProps) =>
|
||||
POST<PushDataResponse>(`/core/dataset/data/pushData`, data);
|
||||
POST<PushDatasetDataResponse>(`/core/dataset/data/pushData`, data);
|
||||
|
||||
/**
|
||||
* insert one data to dataset (immediately insert)
|
||||
|
Reference in New Issue
Block a user