4.6.7 fix (#752)

This commit is contained in:
Archer
2024-01-19 20:16:08 +08:00
committed by GitHub
parent c031e6dcc9
commit 5e2adb22f0
37 changed files with 420 additions and 293 deletions

View File

@@ -42,7 +42,6 @@
"next": "13.5.2",
"next-i18next": "^13.3.0",
"nprogress": "^0.2.0",
"papaparse": "^5.4.1",
"react": "18.2.0",
"react-day-picker": "^8.7.1",
"react-dom": "18.2.0",
@@ -66,7 +65,6 @@
"@types/jsonwebtoken": "^9.0.3",
"@types/lodash": "^4.14.191",
"@types/node": "^20.8.5",
"@types/papaparse": "^5.3.7",
"@types/react": "18.2.0",
"@types/react-dom": "18.2.0",
"@types/react-syntax-highlighter": "^15.5.6",

View File

@@ -226,7 +226,7 @@
"Chat test": "测试对话",
"Max Token": "单条数据上限",
"Start chat": "立即对话",
"Total chars": "总字数: {{total}}",
"Total chars": "总字数: {{total}}",
"Total tokens": "总 Tokens: {{total}}",
"ai": {
"Model": "AI 模型",
@@ -541,8 +541,7 @@
"success": "开始同步"
}
},
"training": {
}
"training": {}
},
"data": {
"Auxiliary Data": "辅助数据",

View File

@@ -17,7 +17,7 @@ const ButtonEdge = (props: EdgeProps) => {
style = {}
} = props;
const [labelX, labelY] = getBezierPath({
const [, labelX, labelY] = getBezierPath({
sourceX,
sourceY,
sourcePosition,

View File

@@ -8,6 +8,3 @@ import { DatasetCollectionSchemaType } from '@fastgpt/global/core/dataset/type';
/* ======= collection =========== */
/* ==== data ===== */
export type PushDataResponse = {
insertLen: number;
};

View File

@@ -27,13 +27,7 @@ export type CreateDatasetParams = {
export type InsertOneDatasetDataProps = PushDatasetDataChunkProps & {
collectionId: string;
};
export type PushDatasetDataProps = {
collectionId: string;
data: PushDatasetDataChunkProps[];
trainingMode: `${TrainingModeEnum}`;
prompt?: string;
billId?: string;
};
export type UpdateDatasetDataProps = {
id: string;
q?: string; // embedding content

View File

@@ -16,11 +16,15 @@ import { checkDatasetLimit } from '@fastgpt/service/support/permission/limit/dat
import { predictDataLimitLength } from '@fastgpt/global/core/dataset/utils';
import { pushDataToTrainingQueue } from '@/service/core/dataset/data/controller';
import { hashStr } from '@fastgpt/global/common/string/tools';
import { createTrainingBill } from '@fastgpt/service/support/wallet/bill/controller';
import { BillSourceEnum } from '@fastgpt/global/support/wallet/bill/constants';
import { getQAModel, getVectorModel } from '@/service/core/ai/model';
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
try {
await connectToDatabase();
const {
name,
text,
trainingType = TrainingModeEnum.chunk,
chunkSize = 512,
@@ -29,7 +33,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
...body
} = req.body as TextCreateDatasetCollectionParams;
const { teamId, tmbId } = await authDataset({
const { teamId, tmbId, dataset } = await authDataset({
req,
authToken: true,
authApiKey: true,
@@ -52,21 +56,32 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
insertLen: predictDataLimitLength(trainingType, chunks)
});
// 3. create collection
const collectionId = await createOneCollection({
...body,
teamId,
tmbId,
type: DatasetCollectionTypeEnum.virtual,
// 3. create collection and training bill
const [collectionId, { billId }] = await Promise.all([
createOneCollection({
...body,
teamId,
tmbId,
type: DatasetCollectionTypeEnum.virtual,
trainingType,
chunkSize,
chunkSplitter,
qaPrompt,
name,
trainingType,
chunkSize,
chunkSplitter,
qaPrompt,
hashRawText: hashStr(text),
rawTextLength: text.length
});
hashRawText: hashStr(text),
rawTextLength: text.length
}),
createTrainingBill({
teamId,
tmbId,
appName: name,
billSource: BillSourceEnum.training,
vectorModel: getVectorModel(dataset.vectorModel)?.name,
agentModel: getQAModel(dataset.agentModel)?.name
})
]);
// 4. push chunks to training queue
const insertResults = await pushDataToTrainingQueue({
@@ -74,6 +89,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
tmbId,
collectionId,
trainingMode: trainingType,
prompt: qaPrompt,
billId,
data: chunks.map((text, index) => ({
q: text,
chunkIndex: index
@@ -90,3 +107,11 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
});
}
}
export const config = {
api: {
bodyParser: {
sizeLimit: '10mb'
}
}
};

View File

@@ -3,8 +3,10 @@ import type { NextApiRequest, NextApiResponse } from 'next';
import { jsonRes } from '@fastgpt/service/common/response';
import { connectToDatabase } from '@/service/mongo';
import { withNextCors } from '@fastgpt/service/common/middle/cors';
import type { PushDataResponse } from '@/global/core/api/datasetRes.d';
import type { PushDatasetDataProps } from '@/global/core/dataset/api.d';
import type {
PushDatasetDataProps,
PushDatasetDataResponse
} from '@fastgpt/global/core/dataset/api.d';
import { authDatasetCollection } from '@fastgpt/service/support/permission/auth/dataset';
import { checkDatasetLimit } from '@fastgpt/service/support/permission/limit/dataset';
import { predictDataLimitLength } from '@fastgpt/global/core/dataset/utils';
@@ -39,7 +41,7 @@ export default withNextCors(async function handler(req: NextApiRequest, res: Nex
insertLen: predictDataLimitLength(collection.trainingType, data)
});
jsonRes<PushDataResponse>(res, {
jsonRes<PushDatasetDataResponse>(res, {
data: await pushDataToTrainingQueue({
...req.body,
teamId,

View File

@@ -12,16 +12,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
const method = (req.method || 'POST') as Method;
const { path = [], ...query } = req.query as any;
const url = `/${path?.join('/')}`;
const url = `/${path?.join('/')}?${new URLSearchParams(query).toString()}`;
if (!url) {
throw new Error('url is empty');
}
const data = {
...req.body,
...query
};
const data = req.body || query;
const repose = await request(
url,
@@ -56,3 +53,12 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
});
}
}
export const config = {
api: {
bodyParser: {
sizeLimit: '10mb'
},
responseLimit: '10mb'
}
};

View File

@@ -27,7 +27,7 @@ const Upload = dynamic(() => import('../commonProgress/Upload'));
const PreviewRawText = dynamic(() => import('../components/PreviewRawText'));
type FileItemType = ImportSourceItemType & { file: File };
const fileType = '.txt, .docx, .pdf, .md, .html';
const fileType = '.txt, .docx, .csv, .pdf, .md, .html';
const maxSelectFileCount = 1000;
const FileLocal = ({ activeStep, goToNext }: ImportDataComponentProps) => {

View File

@@ -14,7 +14,8 @@ import { useImportStore } from '../Provider';
import { feConfigs } from '@/web/common/system/staticData';
import dynamic from 'next/dynamic';
import { fileDownload, readCsvContent } from '@/web/common/file/utils';
import { fileDownload } from '@/web/common/file/utils';
import { readCsvContent } from '@fastgpt/web/common/file/read/csv';
const PreviewData = dynamic(() => import('../commonProgress/PreviewData'));
const Upload = dynamic(() => import('../commonProgress/Upload'));
@@ -56,7 +57,7 @@ const SelectFile = React.memo(function SelectFile({ goToNext }: { goToNext: () =
{
for await (const selectFile of files) {
const { file, folderPath } = selectFile;
const { header, data } = await readCsvContent(file);
const { header, data } = await readCsvContent({ file });
const filterData: FileItemType['chunks'] = data
.filter((item) => item[0])

View File

@@ -193,7 +193,10 @@ const InputDataModal = ({
// not exactly same
await putDatasetDataById({
id: dataId,
...e
...e,
indexes: e.indexes.map((index) =>
index.defaultIndex ? getDefaultIndex({ q: e.q, a: e.a }) : index
)
});
return {

View File

@@ -35,7 +35,8 @@ import dynamic from 'next/dynamic';
import { useForm } from 'react-hook-form';
import MySelect from '@/components/Select';
import { useSelectFile } from '@/web/common/file/hooks/useSelectFile';
import { fileDownload, readCsvContent } from '@/web/common/file/utils';
import { fileDownload } from '@/web/common/file/utils';
import { readCsvContent } from '@fastgpt/web/common/file/read/csv';
import { delay } from '@fastgpt/global/common/system/utils';
import QuoteItem from '@/components/core/dataset/QuoteItem';
@@ -125,7 +126,7 @@ const Test = ({ datasetId }: { datasetId: string }) => {
const { mutate: onFileTest, isLoading: fileTestIsLoading } = useRequest({
mutationFn: async ({ searchParams }: FormType) => {
if (!selectFile) return Promise.reject('File is not selected');
const { data } = await readCsvContent(selectFile);
const { data } = await readCsvContent({ file: selectFile });
const testList = data.slice(0, 100);
const results: SearchTestResponse[] = [];

View File

@@ -3,6 +3,11 @@ import { generateQA } from '@/service/events/generateQA';
import { generateVector } from '@/service/events/generateVector';
import { setCron } from '@fastgpt/service/common/system/cron';
export const startCron = () => {
setUpdateSystemConfigCron();
setTrainingQueueCron();
};
export const setUpdateSystemConfigCron = () => {
setCron('*/5 * * * *', () => {
initSystemConfig();
@@ -11,7 +16,7 @@ export const setUpdateSystemConfigCron = () => {
};
export const setTrainingQueueCron = () => {
setCron('*/3 * * * *', () => {
setCron('*/1 * * * *', () => {
generateVector();
generateQA();
});

View File

@@ -9,13 +9,11 @@ import {
recallFromVectorStore,
updateDatasetDataVector
} from '@fastgpt/service/common/vectorStore/controller';
import { Types } from 'mongoose';
import {
DatasetDataIndexTypeEnum,
DatasetSearchModeEnum,
DatasetSearchModeMap,
SearchScoreTypeEnum,
TrainingModeEnum
SearchScoreTypeEnum
} from '@fastgpt/global/core/dataset/constants';
import { getDefaultIndex } from '@fastgpt/global/core/dataset/utils';
import { jiebaSplit } from '@/service/common/string/jieba';
@@ -29,172 +27,26 @@ import {
} from '@fastgpt/global/core/dataset/type';
import { reRankRecall } from '../../ai/rerank';
import { countPromptTokens } from '@fastgpt/global/common/string/tiktoken';
import { hashStr, simpleText } from '@fastgpt/global/common/string/tools';
import type { PushDatasetDataProps } from '@/global/core/dataset/api.d';
import type { PushDataResponse } from '@/global/core/api/datasetRes';
import { PushDatasetDataChunkProps } from '@fastgpt/global/core/dataset/api';
import { MongoDatasetTraining } from '@fastgpt/service/core/dataset/training/schema';
import { startQueue } from '@/service/utils/tools';
import { getCollectionWithDataset } from '@fastgpt/service/core/dataset/controller';
import { getQAModel, getVectorModel } from '../../ai/model';
import { delay } from '@fastgpt/global/common/system/utils';
import { hashStr } from '@fastgpt/global/common/string/tools';
import type {
PushDatasetDataProps,
PushDatasetDataResponse
} from '@fastgpt/global/core/dataset/api.d';
import { pushDataListToTrainingQueue } from '@fastgpt/service/core/dataset/training/controller';
export async function pushDataToTrainingQueue({
teamId,
tmbId,
collectionId,
data,
prompt,
billId,
trainingMode
}: {
teamId: string;
tmbId: string;
} & PushDatasetDataProps): Promise<PushDataResponse> {
const checkModelValid = async ({ collectionId }: { collectionId: string }) => {
const {
datasetId: { _id: datasetId, vectorModel, agentModel }
} = await getCollectionWithDataset(collectionId);
if (trainingMode === TrainingModeEnum.chunk) {
if (!collectionId) return Promise.reject(`CollectionId is empty`);
const vectorModelData = getVectorModel(vectorModel);
if (!vectorModelData) {
return Promise.reject(`Model ${vectorModel} is inValid`);
}
return {
datasetId,
maxToken: vectorModelData.maxToken * 1.5,
model: vectorModelData.model,
weight: vectorModelData.weight
};
}
if (trainingMode === TrainingModeEnum.qa) {
const qaModelData = getQAModel(agentModel);
if (!qaModelData) {
return Promise.reject(`Model ${agentModel} is inValid`);
}
return {
datasetId,
maxToken: qaModelData.maxContext * 0.8,
model: qaModelData.model,
weight: 0
};
}
return Promise.reject(`Mode ${trainingMode} is inValid`);
};
const { datasetId, model, maxToken, weight } = await checkModelValid({
collectionId
export async function pushDataToTrainingQueue(
props: {
teamId: string;
tmbId: string;
} & PushDatasetDataProps
): Promise<PushDatasetDataResponse> {
const result = await pushDataListToTrainingQueue({
...props,
vectorModelList: global.vectorModels,
qaModelList: global.qaModels
});
// format q and a, remove empty char
data.forEach((item) => {
item.q = simpleText(item.q);
item.a = simpleText(item.a);
item.indexes = item.indexes
?.map((index) => {
return {
...index,
text: simpleText(index.text)
};
})
.filter(Boolean);
});
// filter repeat or equal content
const set = new Set();
const filterResult: Record<string, PushDatasetDataChunkProps[]> = {
success: [],
overToken: [],
repeat: [],
error: []
};
data.forEach((item) => {
if (!item.q) {
filterResult.error.push(item);
return;
}
const text = item.q + item.a;
// count q token
const token = countPromptTokens(item.q);
if (token > maxToken) {
filterResult.overToken.push(item);
return;
}
if (set.has(text)) {
console.log('repeat', item);
filterResult.repeat.push(item);
} else {
filterResult.success.push(item);
set.add(text);
}
});
// 插入记录
const insertData = async (dataList: PushDatasetDataChunkProps[], retry = 3): Promise<number> => {
try {
const results = await MongoDatasetTraining.insertMany(
dataList.map((item, i) => ({
teamId,
tmbId,
datasetId,
collectionId,
billId,
mode: trainingMode,
prompt,
model,
q: item.q,
a: item.a,
chunkIndex: item.chunkIndex ?? i,
weight: weight ?? 0,
indexes: item.indexes
}))
);
await delay(500);
return results.length;
} catch (error) {
if (retry > 0) {
await delay(1000);
return insertData(dataList, retry - 1);
}
return Promise.reject(error);
}
};
let insertLen = 0;
const chunkSize = 50;
const chunkList = filterResult.success.reduce(
(acc, cur) => {
const lastChunk = acc[acc.length - 1];
if (lastChunk.length < chunkSize) {
lastChunk.push(cur);
} else {
acc.push([cur]);
}
return acc;
},
[[]] as PushDatasetDataChunkProps[][]
);
for await (const chunks of chunkList) {
insertLen += await insertData(chunks);
}
startQueue();
delete filterResult.success;
return {
insertLen,
...filterResult
};
return result;
}
/* insert data.
@@ -341,6 +193,11 @@ export async function updateData2Dataset({
text: qaStr
}
});
} else {
patchResult.push({
type: 'unChange',
index: item
});
}
} else {
// not in database, create
@@ -379,6 +236,7 @@ export async function updateData2Dataset({
model
});
item.index.dataId = result.insertId;
return result;
}
if (item.type === 'delete' && item.index.dataId) {
@@ -397,13 +255,14 @@ export async function updateData2Dataset({
);
const charsLength = result.reduce((acc, cur) => acc + cur.charsLength, 0);
const newIndexes = patchResult.filter((item) => item.type !== 'delete').map((item) => item.index);
// update mongo other data
mongoData.q = q || mongoData.q;
mongoData.a = a ?? mongoData.a;
mongoData.fullTextToken = jiebaSplit({ text: mongoData.q + mongoData.a });
// @ts-ignore
mongoData.indexes = indexes;
mongoData.indexes = newIndexes;
await mongoData.save();
return {

View File

@@ -7,7 +7,7 @@ import { createDefaultTeam } from '@fastgpt/service/support/user/team/controller
import { exit } from 'process';
import { initVectorStore } from '@fastgpt/service/common/vectorStore/controller';
import { getInitConfig } from '@/pages/api/common/system/getInitData';
import { setUpdateSystemConfigCron, setTrainingQueueCron } from './common/system/cron';
import { startCron } from './common/system/cron';
/**
* connect MongoDB and init data
@@ -23,8 +23,7 @@ export function connectToDatabase(): Promise<void> {
getInitConfig();
// cron
setUpdateSystemConfigCron();
setTrainingQueueCron();
startCron();
initRootUser();
}

View File

@@ -32,13 +32,24 @@ export const uploadFiles = ({
});
};
export const getUploadBase64ImgController = (props: CompressImgProps & UploadImgProps) =>
compressBase64ImgAndUpload({
maxW: 4000,
maxH: 4000,
maxSize: 1024 * 1024 * 5,
...props
});
export const getUploadBase64ImgController = (
props: CompressImgProps & UploadImgProps,
retry = 3
): Promise<string> => {
try {
return compressBase64ImgAndUpload({
maxW: 4000,
maxH: 4000,
maxSize: 1024 * 1024 * 5,
...props
});
} catch (error) {
if (retry > 0) {
return getUploadBase64ImgController(props, retry - 1);
}
return Promise.reject(error);
}
};
/**
* compress image. response base64

View File

@@ -1,29 +1,3 @@
import Papa from 'papaparse';
import { readFileRawText } from '@fastgpt/web/common/file/read/rawText';
/**
* read csv to json
* @response {
* header: string[],
* data: string[][]
* }
*/
export const readCsvContent = async (file: File) => {
try {
const { rawText: textArr } = await readFileRawText(file);
const csvArr = Papa.parse(textArr).data as string[][];
if (csvArr.length === 0) {
throw new Error('csv 解析失败');
}
return {
header: csvArr.shift() as string[],
data: csvArr.map((item) => item)
};
} catch (error) {
return Promise.reject('解析 csv 文件失败');
}
};
/**
* file download by text
*/

View File

@@ -19,12 +19,14 @@ import type {
SearchTestResponse
} from '@/global/core/dataset/api.d';
import type {
PushDatasetDataProps,
UpdateDatasetDataProps,
CreateDatasetParams,
InsertOneDatasetDataProps
} from '@/global/core/dataset/api.d';
import type { PushDataResponse } from '@/global/core/api/datasetRes.d';
import type {
PushDatasetDataProps,
PushDatasetDataResponse
} from '@fastgpt/global/core/dataset/api.d';
import type { DatasetCollectionItemType } from '@fastgpt/global/core/dataset/type';
import {
DatasetCollectionSyncResultEnum,
@@ -97,7 +99,7 @@ export const getDatasetDataItemById = (id: string) =>
* push data to training queue
*/
export const postChunks2Dataset = (data: PushDatasetDataProps) =>
POST<PushDataResponse>(`/core/dataset/data/pushData`, data);
POST<PushDatasetDataResponse>(`/core/dataset/data/pushData`, data);
/**
* insert one data to dataset (immediately insert)