4.6.7 fix (#752)

This commit is contained in:
Archer
2024-01-19 20:16:08 +08:00
committed by GitHub
parent c031e6dcc9
commit 5e2adb22f0
37 changed files with 420 additions and 293 deletions

View File

@@ -89,6 +89,7 @@ try {
close custom feedback;
*/
ChatItemSchema.index({ appId: 1, chatId: 1, dataId: 1 }, { background: true });
ChatItemSchema.index({ time: -1 }, { background: true });
ChatItemSchema.index({ userGoodFeedback: 1 }, { background: true });
ChatItemSchema.index({ userBadFeedback: 1 }, { background: true });
ChatItemSchema.index({ customFeedbacks: 1 }, { background: true });

View File

@@ -25,7 +25,7 @@ export async function createOneCollection({
type,
trainingType = TrainingModeEnum.chunk,
chunkSize = 0,
chunkSize = 512,
chunkSplitter,
qaPrompt,
@@ -134,7 +134,10 @@ export async function delCollectionAndRelatedSources({
// delete file and imgs
await Promise.all([
delImgByRelatedId(relatedImageIds),
delImgByRelatedId({
teamId,
relateIds: relatedImageIds
}),
delFileByFileIdList({
bucketName: BucketNameEnum.dataset,
fileIdList

View File

@@ -1,5 +1,15 @@
import { delay } from '@fastgpt/global/common/system/utils';
import { MongoDatasetTraining } from './schema';
import type {
PushDatasetDataChunkProps,
PushDatasetDataProps,
PushDatasetDataResponse
} from '@fastgpt/global/core/dataset/api.d';
import { getCollectionWithDataset } from '../controller';
import { TrainingModeEnum } from '@fastgpt/global/core/dataset/constants';
import { simpleText } from '@fastgpt/global/common/string/tools';
import { countPromptTokens } from '@fastgpt/global/common/string/tiktoken';
import type { VectorModelItemType, LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
export const lockTrainingDataByTeamId = async (teamId: string, retry = 3): Promise<any> => {
try {
@@ -19,3 +29,165 @@ export const lockTrainingDataByTeamId = async (teamId: string, retry = 3): Promi
return Promise.reject(error);
}
};
export async function pushDataListToTrainingQueue({
teamId,
tmbId,
collectionId,
data,
prompt,
billId,
trainingMode = TrainingModeEnum.chunk,
vectorModelList = [],
qaModelList = []
}: {
teamId: string;
tmbId: string;
vectorModelList: VectorModelItemType[];
qaModelList: LLMModelItemType[];
} & PushDatasetDataProps): Promise<PushDatasetDataResponse> {
const {
datasetId: { _id: datasetId, vectorModel, agentModel }
} = await getCollectionWithDataset(collectionId);
const checkModelValid = async ({ collectionId }: { collectionId: string }) => {
if (!collectionId) return Promise.reject(`CollectionId is empty`);
if (trainingMode === TrainingModeEnum.chunk) {
const vectorModelData = vectorModelList?.find((item) => item.model === vectorModel);
if (!vectorModelData) {
return Promise.reject(`Model ${vectorModel} is inValid`);
}
return {
maxToken: vectorModelData.maxToken * 1.5,
model: vectorModelData.model,
weight: vectorModelData.weight
};
}
if (trainingMode === TrainingModeEnum.qa) {
const qaModelData = qaModelList?.find((item) => item.model === agentModel);
if (!qaModelData) {
return Promise.reject(`Model ${agentModel} is inValid`);
}
return {
maxToken: qaModelData.maxContext * 0.8,
model: qaModelData.model,
weight: 0
};
}
return Promise.reject(`Training mode "${trainingMode}" is inValid`);
};
const { model, maxToken, weight } = await checkModelValid({
collectionId
});
// format q and a, remove empty char
data.forEach((item) => {
item.q = simpleText(item.q);
item.a = simpleText(item.a);
item.indexes = item.indexes
?.map((index) => {
return {
...index,
text: simpleText(index.text)
};
})
.filter(Boolean);
});
// filter repeat or equal content
const set = new Set();
const filterResult: Record<string, PushDatasetDataChunkProps[]> = {
success: [],
overToken: [],
repeat: [],
error: []
};
// filter repeat content
data.forEach((item) => {
if (!item.q) {
filterResult.error.push(item);
return;
}
const text = item.q + item.a;
// count q token
const token = countPromptTokens(item.q);
if (token > maxToken) {
filterResult.overToken.push(item);
return;
}
if (set.has(text)) {
console.log('repeat', item);
filterResult.repeat.push(item);
} else {
filterResult.success.push(item);
set.add(text);
}
});
// insert data to db
const insertData = async (dataList: PushDatasetDataChunkProps[], retry = 3): Promise<number> => {
try {
const results = await MongoDatasetTraining.insertMany(
dataList.map((item, i) => ({
teamId,
tmbId,
datasetId,
collectionId,
billId,
mode: trainingMode,
prompt,
model,
q: item.q,
a: item.a,
chunkIndex: item.chunkIndex ?? i,
weight: weight ?? 0,
indexes: item.indexes
}))
);
await delay(500);
return results.length;
} catch (error) {
if (retry > 0) {
await delay(500);
return insertData(dataList, retry - 1);
}
return Promise.reject(error);
}
};
let insertLen = 0;
const chunkSize = 50;
const chunkList = filterResult.success.reduce(
(acc, cur) => {
const lastChunk = acc[acc.length - 1];
if (lastChunk.length < chunkSize) {
lastChunk.push(cur);
} else {
acc.push([cur]);
}
return acc;
},
[[]] as PushDatasetDataChunkProps[][]
);
for await (const chunks of chunkList) {
insertLen += await insertData(chunks);
}
delete filterResult.success;
return {
insertLen,
...filterResult
};
}